ΔFosB: A sustained molecular switch for addiction

E. J. Nestler, M. Barrot, D. W. Self

Research output: Contribution to journalArticlepeer-review

504 Scopus citations

Abstract

The longevity of some of the behavioral abnormalities that characterize drug addiction has suggested that regulation of neural gene expression may be involved in the process by which drugs of abuse cause a state of addiction. Increasing evidence suggests that the transcription factor ΔFosB represents one mechanism by which drugs of abuse produce relatively stable changes in the brain that contribute to the addiction phenotype. ΔFosB, a member of the Fos family of transcription factors, accumulates within a subset of neurons of the nucleus accumbens and dorsal striatum (brain regions important for addiction) after repeated administration of many kinds of drugs of abuse. Similar accumulation of ΔFosB occurs after compulsive running, which suggests that ΔFosB may accumulate in response to many types of compulsive behaviors. Importantly, ΔFosB persists in neurons for relatively long periods of time because of its extraordinary stability. Therefore, ΔFosB represents a molecular mechanism that could initiate and then sustain changes in gene expression that persist long after drug exposure ceases. Studies in inducible transgenic mice that overexpress either ΔFosB or a dominant negative inhibitor of the protein provide direct evidence that ΔFosB causes increased sensitivity to the behavioral effects of drugs of abuse and, possibly, increased drug seeking behavior. This work supports the view that ΔFosB functions as a type of sustained "molecular switch" that gradually converts acute drug responses into relatively stable adaptations that contribute to the long-term neural and behavioral plasticity that underlies addiction.

Original languageEnglish (US)
Pages (from-to)11042-11046
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume98
Issue number20
DOIs
StatePublished - Sep 25 2001

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'ΔFosB: A sustained molecular switch for addiction'. Together they form a unique fingerprint.

Cite this