A block at Man5GlcNAc2-pyrophosphoryldolichol in intact but not disrupted castanospermine and swainsonine-resistant Chinese hamster ovary cells

Yucheng Zeng, Mark A. Lehrman

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

A mutation in glycoprotein processing inhibitor-resistant (PIR) Chinese hamster ovary (CHO) cells was previously shown to result in a block at the Man5GlcNAc2 stage of the dolichololigosaccharide biosynthetic pathway (Lehrman, M. A., and Zeng, Y. (1989) J. Biol. Chem. 264, 1584-1593). These cells had normal mannose-P-dolichol synthase activity and were able to transfer the MaH5GlcNAc2 oligosaccharides to protein. We have now characterized the mutation in greater detail. In PIR cells, biosynthesis of GDP-mannose and mannose-P-dolichol was normal, and pulse-chase analysis indicated that the rate of Man5GlcNAc2-P-P-dolichol formation in vivo was similar to that in parental CHO cells but without subsequent formation of larger intermediates. Cell fusion studies demonstrated that the PIR genotype was recessive and that PIR cells could complement the mutation in B4-2-1 cells, which fail to synthesize mannose-P-dolichol. In contrast to the results obtained with intact cells, incubation of membrane preparations of PIR cells with GDP-[3H]mannose resulted in the synthesis of intermediates containing up to 9 mannose residues, indicating that the cells contained active mannosyltransferases VI to IX. With a simplified assay for the formation of intermediates containing 6 to 9 mannoses, it was shown that physical disruption of PIR cells was able to eliminate the block at the pentamannosyl stage. Furthermore, although the temperature requirements of the reactions for the control CHO and PIR membranes were similar, Man5GlcNAc2-elongating activity in CHO membranes was inhibited by alkaline pH treatment, whereas this treatment irreversibly stimulated the activity in PIR membranes. Taken together, these results suggest that the PIR cells have a recessive defect, and that the missing gene product is required by mannosyltransferase VI in vivo for proper utilization of either mannose-P-dolichol or Man5GlcNAc2-P-P-dolichol. Since the defect was manifested in vivo but not in vitro, this requirement appears necessary for intact cells but not for disrupted cells or isolated membranes.

Original languageEnglish (US)
Pages (from-to)2296-2305
Number of pages10
JournalJournal of Biological Chemistry
Volume265
Issue number4
StatePublished - Feb 5 1990

Fingerprint

Swainsonine
Cricetulus
Ovary
Cells
Mannose
Dolichol
Processing
Membranes
Mannosyltransferases
Guanosine Diphosphate Mannose
Mutation
mannosyl(5)-N-acetyl(2)-glucose
castanospermine
Defects
Biosynthesis
Oligosaccharides
Cell Fusion
Assays
Biosynthetic Pathways
Glycoproteins

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{2e6da6d4eecc4cc2a73e4e809cdd7094,
title = "A block at Man5GlcNAc2-pyrophosphoryldolichol in intact but not disrupted castanospermine and swainsonine-resistant Chinese hamster ovary cells",
abstract = "A mutation in glycoprotein processing inhibitor-resistant (PIR) Chinese hamster ovary (CHO) cells was previously shown to result in a block at the Man5GlcNAc2 stage of the dolichololigosaccharide biosynthetic pathway (Lehrman, M. A., and Zeng, Y. (1989) J. Biol. Chem. 264, 1584-1593). These cells had normal mannose-P-dolichol synthase activity and were able to transfer the MaH5GlcNAc2 oligosaccharides to protein. We have now characterized the mutation in greater detail. In PIR cells, biosynthesis of GDP-mannose and mannose-P-dolichol was normal, and pulse-chase analysis indicated that the rate of Man5GlcNAc2-P-P-dolichol formation in vivo was similar to that in parental CHO cells but without subsequent formation of larger intermediates. Cell fusion studies demonstrated that the PIR genotype was recessive and that PIR cells could complement the mutation in B4-2-1 cells, which fail to synthesize mannose-P-dolichol. In contrast to the results obtained with intact cells, incubation of membrane preparations of PIR cells with GDP-[3H]mannose resulted in the synthesis of intermediates containing up to 9 mannose residues, indicating that the cells contained active mannosyltransferases VI to IX. With a simplified assay for the formation of intermediates containing 6 to 9 mannoses, it was shown that physical disruption of PIR cells was able to eliminate the block at the pentamannosyl stage. Furthermore, although the temperature requirements of the reactions for the control CHO and PIR membranes were similar, Man5GlcNAc2-elongating activity in CHO membranes was inhibited by alkaline pH treatment, whereas this treatment irreversibly stimulated the activity in PIR membranes. Taken together, these results suggest that the PIR cells have a recessive defect, and that the missing gene product is required by mannosyltransferase VI in vivo for proper utilization of either mannose-P-dolichol or Man5GlcNAc2-P-P-dolichol. Since the defect was manifested in vivo but not in vitro, this requirement appears necessary for intact cells but not for disrupted cells or isolated membranes.",
author = "Yucheng Zeng and Lehrman, {Mark A.}",
year = "1990",
month = "2",
day = "5",
language = "English (US)",
volume = "265",
pages = "2296--2305",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "4",

}

TY - JOUR

T1 - A block at Man5GlcNAc2-pyrophosphoryldolichol in intact but not disrupted castanospermine and swainsonine-resistant Chinese hamster ovary cells

AU - Zeng, Yucheng

AU - Lehrman, Mark A.

PY - 1990/2/5

Y1 - 1990/2/5

N2 - A mutation in glycoprotein processing inhibitor-resistant (PIR) Chinese hamster ovary (CHO) cells was previously shown to result in a block at the Man5GlcNAc2 stage of the dolichololigosaccharide biosynthetic pathway (Lehrman, M. A., and Zeng, Y. (1989) J. Biol. Chem. 264, 1584-1593). These cells had normal mannose-P-dolichol synthase activity and were able to transfer the MaH5GlcNAc2 oligosaccharides to protein. We have now characterized the mutation in greater detail. In PIR cells, biosynthesis of GDP-mannose and mannose-P-dolichol was normal, and pulse-chase analysis indicated that the rate of Man5GlcNAc2-P-P-dolichol formation in vivo was similar to that in parental CHO cells but without subsequent formation of larger intermediates. Cell fusion studies demonstrated that the PIR genotype was recessive and that PIR cells could complement the mutation in B4-2-1 cells, which fail to synthesize mannose-P-dolichol. In contrast to the results obtained with intact cells, incubation of membrane preparations of PIR cells with GDP-[3H]mannose resulted in the synthesis of intermediates containing up to 9 mannose residues, indicating that the cells contained active mannosyltransferases VI to IX. With a simplified assay for the formation of intermediates containing 6 to 9 mannoses, it was shown that physical disruption of PIR cells was able to eliminate the block at the pentamannosyl stage. Furthermore, although the temperature requirements of the reactions for the control CHO and PIR membranes were similar, Man5GlcNAc2-elongating activity in CHO membranes was inhibited by alkaline pH treatment, whereas this treatment irreversibly stimulated the activity in PIR membranes. Taken together, these results suggest that the PIR cells have a recessive defect, and that the missing gene product is required by mannosyltransferase VI in vivo for proper utilization of either mannose-P-dolichol or Man5GlcNAc2-P-P-dolichol. Since the defect was manifested in vivo but not in vitro, this requirement appears necessary for intact cells but not for disrupted cells or isolated membranes.

AB - A mutation in glycoprotein processing inhibitor-resistant (PIR) Chinese hamster ovary (CHO) cells was previously shown to result in a block at the Man5GlcNAc2 stage of the dolichololigosaccharide biosynthetic pathway (Lehrman, M. A., and Zeng, Y. (1989) J. Biol. Chem. 264, 1584-1593). These cells had normal mannose-P-dolichol synthase activity and were able to transfer the MaH5GlcNAc2 oligosaccharides to protein. We have now characterized the mutation in greater detail. In PIR cells, biosynthesis of GDP-mannose and mannose-P-dolichol was normal, and pulse-chase analysis indicated that the rate of Man5GlcNAc2-P-P-dolichol formation in vivo was similar to that in parental CHO cells but without subsequent formation of larger intermediates. Cell fusion studies demonstrated that the PIR genotype was recessive and that PIR cells could complement the mutation in B4-2-1 cells, which fail to synthesize mannose-P-dolichol. In contrast to the results obtained with intact cells, incubation of membrane preparations of PIR cells with GDP-[3H]mannose resulted in the synthesis of intermediates containing up to 9 mannose residues, indicating that the cells contained active mannosyltransferases VI to IX. With a simplified assay for the formation of intermediates containing 6 to 9 mannoses, it was shown that physical disruption of PIR cells was able to eliminate the block at the pentamannosyl stage. Furthermore, although the temperature requirements of the reactions for the control CHO and PIR membranes were similar, Man5GlcNAc2-elongating activity in CHO membranes was inhibited by alkaline pH treatment, whereas this treatment irreversibly stimulated the activity in PIR membranes. Taken together, these results suggest that the PIR cells have a recessive defect, and that the missing gene product is required by mannosyltransferase VI in vivo for proper utilization of either mannose-P-dolichol or Man5GlcNAc2-P-P-dolichol. Since the defect was manifested in vivo but not in vitro, this requirement appears necessary for intact cells but not for disrupted cells or isolated membranes.

UR - http://www.scopus.com/inward/record.url?scp=0025192473&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025192473&partnerID=8YFLogxK

M3 - Article

VL - 265

SP - 2296

EP - 2305

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 4

ER -