A clinical combined gadobutrol bolus and slow infusion protocol enabling angiography, inversion recovery whole heart, and late gadolinium enhancement imaging in a single study

Animesh Tandon, Lorraine James, Markus Henningsson, René M. Botnar, Amanda Potersnak, Gerald F. Greil, Tarique Hussain

Research output: Contribution to journalArticle

Abstract

BACKGROUND: The use of gadolinium contrast agents in cardiovascular magnetic resonance is well-established and serves to improve both vascular imaging as well as enable late gadolinium enhancement (LGE) imaging for tissue characterization. Currently, gadofosveset trisodium, an intravascular contrast agent, combined with a three-dimensional inversion recovery balanced steady state free precession (3D IR bSSFP) sequence, is commonly used in pediatric cardiac imaging and yields excellent vascular imaging, but cannot be used for late gadolinium enhancement. Gadofosveset use remains limited in clinical practice, and manufacture was recently halted, thus an alternative is needed to allow 3D IR bSSFP and LGE in the same study.

METHODS: Here we propose a protocol to give a bolus of 0.1 mL/kg = 0.1 mmol/kg gadobutrol (GADAVIST/GADOVIST) for time-resolved magnetic resonance angiography (MRA). Subsequently, 0.1 mmol/kg is diluted up to 5 or 7.5 mL with saline and then loaded into intravenous tubing connected to the patient. A 0.5 mL short bolus is infused, then a slow infusion is given at 0.02 or 0.03 mL/s. Image navigated (iNAV) 3D IR bSSFP imaging is initiated 45-60 s after the initiation of the infusion, with a total image acquisition time of ~5 min. If necessary, LGE imaging using phase sensitive inversion recovery reconstruction (PSIR) is performed at 10 min after the infusion is initiated.

RESULTS: We have successfully performed the above protocol with good image quality on 10 patients with both time-resolved MRA and 3D IR bSSFP iNAV imaging. Our initial attempts to use pencil beam respiratory navigation failed due to signal labeling in the liver by the navigator. We have also performed 2D PSIR LGE successfully, with both LGE positive and LGE negative results.

CONCLUSION: A bolus of gadobutrol, followed later by a slow infusion, allows time-resolved MRA, 3D IR bSSFP using the iNAV navigation technique, and LGE imaging, all in a single study with a single contrast agent.

Original languageEnglish (US)
Number of pages1
JournalJournal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
Volume18
Issue number1
StatePublished - Oct 5 2016

Fingerprint

Gadolinium
Angiography
Magnetic Resonance Angiography
Contrast Media
Blood Vessels
gadobutrol
Magnetic Resonance Spectroscopy
Pediatrics
Liver

Keywords

  • Congenital heart disease
  • Gadobutrol
  • Late gadolinium enhancement
  • Steady state magnetic resonance angiography
  • Time-resolved magnetic resonance angiography

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Cardiology and Cardiovascular Medicine
  • Family Practice

Cite this

@article{6fb06c0241824833b44ccb9efd560759,
title = "A clinical combined gadobutrol bolus and slow infusion protocol enabling angiography, inversion recovery whole heart, and late gadolinium enhancement imaging in a single study",
abstract = "BACKGROUND: The use of gadolinium contrast agents in cardiovascular magnetic resonance is well-established and serves to improve both vascular imaging as well as enable late gadolinium enhancement (LGE) imaging for tissue characterization. Currently, gadofosveset trisodium, an intravascular contrast agent, combined with a three-dimensional inversion recovery balanced steady state free precession (3D IR bSSFP) sequence, is commonly used in pediatric cardiac imaging and yields excellent vascular imaging, but cannot be used for late gadolinium enhancement. Gadofosveset use remains limited in clinical practice, and manufacture was recently halted, thus an alternative is needed to allow 3D IR bSSFP and LGE in the same study.METHODS: Here we propose a protocol to give a bolus of 0.1 mL/kg = 0.1 mmol/kg gadobutrol (GADAVIST/GADOVIST) for time-resolved magnetic resonance angiography (MRA). Subsequently, 0.1 mmol/kg is diluted up to 5 or 7.5 mL with saline and then loaded into intravenous tubing connected to the patient. A 0.5 mL short bolus is infused, then a slow infusion is given at 0.02 or 0.03 mL/s. Image navigated (iNAV) 3D IR bSSFP imaging is initiated 45-60 s after the initiation of the infusion, with a total image acquisition time of ~5 min. If necessary, LGE imaging using phase sensitive inversion recovery reconstruction (PSIR) is performed at 10 min after the infusion is initiated.RESULTS: We have successfully performed the above protocol with good image quality on 10 patients with both time-resolved MRA and 3D IR bSSFP iNAV imaging. Our initial attempts to use pencil beam respiratory navigation failed due to signal labeling in the liver by the navigator. We have also performed 2D PSIR LGE successfully, with both LGE positive and LGE negative results.CONCLUSION: A bolus of gadobutrol, followed later by a slow infusion, allows time-resolved MRA, 3D IR bSSFP using the iNAV navigation technique, and LGE imaging, all in a single study with a single contrast agent.",
keywords = "Congenital heart disease, Gadobutrol, Late gadolinium enhancement, Steady state magnetic resonance angiography, Time-resolved magnetic resonance angiography",
author = "Animesh Tandon and Lorraine James and Markus Henningsson and Botnar, {Ren{\'e} M.} and Amanda Potersnak and Greil, {Gerald F.} and Tarique Hussain",
year = "2016",
month = "10",
day = "5",
language = "English (US)",
volume = "18",
journal = "Journal of Cardiovascular Magnetic Resonance",
issn = "1097-6647",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - A clinical combined gadobutrol bolus and slow infusion protocol enabling angiography, inversion recovery whole heart, and late gadolinium enhancement imaging in a single study

AU - Tandon, Animesh

AU - James, Lorraine

AU - Henningsson, Markus

AU - Botnar, René M.

AU - Potersnak, Amanda

AU - Greil, Gerald F.

AU - Hussain, Tarique

PY - 2016/10/5

Y1 - 2016/10/5

N2 - BACKGROUND: The use of gadolinium contrast agents in cardiovascular magnetic resonance is well-established and serves to improve both vascular imaging as well as enable late gadolinium enhancement (LGE) imaging for tissue characterization. Currently, gadofosveset trisodium, an intravascular contrast agent, combined with a three-dimensional inversion recovery balanced steady state free precession (3D IR bSSFP) sequence, is commonly used in pediatric cardiac imaging and yields excellent vascular imaging, but cannot be used for late gadolinium enhancement. Gadofosveset use remains limited in clinical practice, and manufacture was recently halted, thus an alternative is needed to allow 3D IR bSSFP and LGE in the same study.METHODS: Here we propose a protocol to give a bolus of 0.1 mL/kg = 0.1 mmol/kg gadobutrol (GADAVIST/GADOVIST) for time-resolved magnetic resonance angiography (MRA). Subsequently, 0.1 mmol/kg is diluted up to 5 or 7.5 mL with saline and then loaded into intravenous tubing connected to the patient. A 0.5 mL short bolus is infused, then a slow infusion is given at 0.02 or 0.03 mL/s. Image navigated (iNAV) 3D IR bSSFP imaging is initiated 45-60 s after the initiation of the infusion, with a total image acquisition time of ~5 min. If necessary, LGE imaging using phase sensitive inversion recovery reconstruction (PSIR) is performed at 10 min after the infusion is initiated.RESULTS: We have successfully performed the above protocol with good image quality on 10 patients with both time-resolved MRA and 3D IR bSSFP iNAV imaging. Our initial attempts to use pencil beam respiratory navigation failed due to signal labeling in the liver by the navigator. We have also performed 2D PSIR LGE successfully, with both LGE positive and LGE negative results.CONCLUSION: A bolus of gadobutrol, followed later by a slow infusion, allows time-resolved MRA, 3D IR bSSFP using the iNAV navigation technique, and LGE imaging, all in a single study with a single contrast agent.

AB - BACKGROUND: The use of gadolinium contrast agents in cardiovascular magnetic resonance is well-established and serves to improve both vascular imaging as well as enable late gadolinium enhancement (LGE) imaging for tissue characterization. Currently, gadofosveset trisodium, an intravascular contrast agent, combined with a three-dimensional inversion recovery balanced steady state free precession (3D IR bSSFP) sequence, is commonly used in pediatric cardiac imaging and yields excellent vascular imaging, but cannot be used for late gadolinium enhancement. Gadofosveset use remains limited in clinical practice, and manufacture was recently halted, thus an alternative is needed to allow 3D IR bSSFP and LGE in the same study.METHODS: Here we propose a protocol to give a bolus of 0.1 mL/kg = 0.1 mmol/kg gadobutrol (GADAVIST/GADOVIST) for time-resolved magnetic resonance angiography (MRA). Subsequently, 0.1 mmol/kg is diluted up to 5 or 7.5 mL with saline and then loaded into intravenous tubing connected to the patient. A 0.5 mL short bolus is infused, then a slow infusion is given at 0.02 or 0.03 mL/s. Image navigated (iNAV) 3D IR bSSFP imaging is initiated 45-60 s after the initiation of the infusion, with a total image acquisition time of ~5 min. If necessary, LGE imaging using phase sensitive inversion recovery reconstruction (PSIR) is performed at 10 min after the infusion is initiated.RESULTS: We have successfully performed the above protocol with good image quality on 10 patients with both time-resolved MRA and 3D IR bSSFP iNAV imaging. Our initial attempts to use pencil beam respiratory navigation failed due to signal labeling in the liver by the navigator. We have also performed 2D PSIR LGE successfully, with both LGE positive and LGE negative results.CONCLUSION: A bolus of gadobutrol, followed later by a slow infusion, allows time-resolved MRA, 3D IR bSSFP using the iNAV navigation technique, and LGE imaging, all in a single study with a single contrast agent.

KW - Congenital heart disease

KW - Gadobutrol

KW - Late gadolinium enhancement

KW - Steady state magnetic resonance angiography

KW - Time-resolved magnetic resonance angiography

UR - http://www.scopus.com/inward/record.url?scp=85038228256&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85038228256&partnerID=8YFLogxK

M3 - Article

VL - 18

JO - Journal of Cardiovascular Magnetic Resonance

JF - Journal of Cardiovascular Magnetic Resonance

SN - 1097-6647

IS - 1

ER -