A magnetic resonance imaging study of Cerebellar volume in tuberous sclerosis complex

Neil I. Weisenfeld, Jurriaan M. Peters, Peter T. Tsai, Sanjay P. Prabhu, Kira A. Dies, Mustafa Sahin, Simon K. Warfield

Research output: Contribution to journalArticle

16 Scopus citations

Abstract

The cerebellum plays an important role in motor learning and cognition, and structural cerebellar abnormalities have been associated with cognitive impairment. In tuberous sclerosis complex, neurologic outcome is highly variable, and no consistent imaging or pathologic determinant of cognition has been firmly established. The cerebellum calls for specific attention because mouse models of tuberous sclerosis complex have demonstrated a loss of cerebellar Purkinje cells, and cases of human histologic data have demonstrated a similar loss in patients. We hypothesized that there might be a common cerebellar finding in tuberous sclerosis complex that could be measured as morphometric changes with magnetic resonance imaging. Using a robust, automated image analysis procedure, we studied 36 patients with tuberous sclerosis complex and age-matched control subjects and observed significant volume loss among patients in the cerebellar cortices and vermis. Furthermore, this effect was strongest in a subgroup of 19 patients with a known, pathogenic mutation of the tuberous sclerosis 2 gene and impacted all cerebellar structures. We conclude that patients with tuberous sclerosis complex exhibit volume loss in the cerebellum, and this loss is larger and more widespread in patients with a tuberous sclerosis 2 mutation.

Original languageEnglish (US)
Pages (from-to)105-110
Number of pages6
JournalPediatric Neurology
Volume48
Issue number2
DOIs
StatePublished - Feb 1 2013

    Fingerprint

ASJC Scopus subject areas

  • Pediatrics, Perinatology, and Child Health
  • Neurology
  • Developmental Neuroscience
  • Clinical Neurology

Cite this

Weisenfeld, N. I., Peters, J. M., Tsai, P. T., Prabhu, S. P., Dies, K. A., Sahin, M., & Warfield, S. K. (2013). A magnetic resonance imaging study of Cerebellar volume in tuberous sclerosis complex. Pediatric Neurology, 48(2), 105-110. https://doi.org/10.1016/j.pediatrneurol.2012.10.011