A native cell membrane nanoparticles system allows for high-quality functional proteoliposome reconstitution

Limin Yang, Claudio Catalano, Yunyao Xu, Weihua Qiu, Dongyu Zhang, Ann McDermott, Youzhong Guo, Paul Blount

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Proteoliposomes mimic the cell membrane environment allowing for structural and functional membrane protein analyses as well as antigen presenting and drug delivery devices. To make proteoliposomes, purified functional membrane proteins are required. Detergents have traditionally been used for the first step in this process. However, they can irreversibly denature or render membrane proteins unstable, and the necessary removal of detergents after reconstitution can decrease proteoliposome yields. The recently developed native cell membrane nanoparticles (NCMN) system has provided a variety of detergent-free alternatives for membrane protein preparation for structural biology research. Here we attempt to employ the MCMN system for the functional reconstitution of channels into proteoliposomes. NCMN polymers NCMNP1-1 and NCMNP7-1, members of a NCMN polymer library that have been successful in extraction and affinity purification of a number of intrinsic membrane proteins, were selected for the purification and subsequent reconstitution of three bacterial channels: KcsA and the mechanosensitive channels of large and small conductance (MscL and MscS). We found that channels in NCMN particles, which appeared to be remarkably stable when stored at 4 °C, can be reconstituted into bilayers by simply incubating with lipids. We show that the resulting proteoliposomes can be patched for electrophysiological studies or used for the generation of liposome-based nanodevices. In sum, the findings demonstrate that the NCMN system is a simple and robust membrane protein extraction and reconstitution approach for making high-quality functional proteoliposomes that could significantly impact membrane protein research and the development of nanodevices.

Original languageEnglish (US)
Article number100011
JournalBBA Advances
Volume1
DOIs
StatePublished - Jan 2021

Keywords

  • KcsA
  • MscL
  • MscS
  • NCMN
  • Proteoliposome
  • Triggered-release

ASJC Scopus subject areas

  • Biophysics
  • Biochemistry

Fingerprint

Dive into the research topics of 'A native cell membrane nanoparticles system allows for high-quality functional proteoliposome reconstitution'. Together they form a unique fingerprint.

Cite this