A Novel Predicted Calcium-Regulated Kinase Family Implicated in Neurological Disorders

Małgorzata Dudkiewicz, Anna Lenart, Krzysztof Pawłowski

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

The catalogues of protein kinases, the essential effectors of cellular signaling, have been charted in Metazoan genomes for a decade now. Yet, surprisingly, using bioinformatics tools, we predicted protein kinase structure for proteins coded by five related human genes and their Metazoan homologues, the FAM69 family. Analysis of three-dimensional structure models and conservation of the classic catalytic motifs of protein kinases present in four out of five human FAM69 proteins suggests they might have retained catalytic phosphotransferase activity. An EF-hand Ca2+-binding domain in FAM69A and FAM69B proteins, inserted within the structure of the kinase domain, suggests they may function as Ca2+-dependent kinases. The FAM69 genes, FAM69A, FAM69B, FAM69C, C3ORF58 (DIA1) and CXORF36 (DIA1R), are by large uncharacterised molecularly, yet linked to several neurological disorders in genetics studies. The C3ORF58 gene is found deleted in autism, and resides in the Golgi. Unusually high cysteine content and presence of signal peptides in some of the family members suggest that FAM69 proteins may be involved in phosphorylation of proteins in the secretory pathway and/or of extracellular proteins.

Original languageEnglish (US)
Article numbere66427
JournalPloS one
Volume8
Issue number6
DOIs
StatePublished - Jun 28 2013
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'A Novel Predicted Calcium-Regulated Kinase Family Implicated in Neurological Disorders'. Together they form a unique fingerprint.

Cite this