A transistor-like pH nanoprobe for tumour detection and image-guided surgery

Tian Zhao, Gang Huang, Yang Li, Shunchun Yang, Saleh Ramezani, Zhiqiang Lin, Yiguang Wang, Xinpeng Ma, Zhiqun Zeng, Min Luo, Esther De Boer, Xian Jin Xie, Joel Thibodeaux, Rolf A. Brekken, Xiankai Sun, Baran D. Sumer, Jinming Gao

Research output: Contribution to journalArticlepeer-review

153 Scopus citations

Abstract

It is challenging to detect a broad range of malignant tumours at high resolution, because of profound genetic and histological differences in cancerous tissue. Here, we report the design and performance of a fluorescent nanoprobe with transistor-like responses (transition pH = 6.9) for the detection of deregulated pH, which drives many of the invasive properties of cancer. The nanoprobe amplifies the fluorescence signal in the tumour over that in the surrounding normal tissues, resulting in a discretized, binary output signal with a spatial resolution smaller than 1 mm. The nanoprobe allowed us to image a broad range of tumours in mouse models using a variety of clinical cameras. We were able to perform real-time tumour-acidosis-guided detection and surgery of occult nodules (<1 mm 3) in mice bearing head and neck or breast tumours, significantly lengthening mice survivability. We also show that the pH nanoprobe can be used as a reporter in a fast, quantitative assay to screen for tumour-acidosis inhibitors. The binary delineation of pH achieved by the nanoprobe promises to improve the accuracy of cancer detection, surveillance and therapy.

Original languageEnglish (US)
Article number0006
JournalNature Biomedical Engineering
Volume1
Issue number1
DOIs
StatePublished - Jan 10 2017

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Medicine (miscellaneous)
  • Biomedical Engineering
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A transistor-like pH nanoprobe for tumour detection and image-guided surgery'. Together they form a unique fingerprint.

Cite this