Activity of 17β-hydroxysteroid oxidoreductase in tissues of the human fetus

L. Milewich, P. C. MacDonald, B. R. Carr

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

The interconversion of oestrone and oestradiol, androstenedione and testosterone, and dehydroepiandrosterone and 5-androstene-3β,17β-diol in mammalian tissues is catalysed by 17β-hydroxysteroid oxidoreductase (17β-HSOR). To identify tissue sites of 17β-HSOR activity in the human fetus, microsomal fractions from 15 different fetal tissues obtained from first and second trimester pregnancies were used for evaluation of enzymatic activity by use of [17α-3H]oestradiol as the substrate and NADP+ as the co-factor. With these reagents, the enzyme-catalysed reaction led to the production of both non-radiolabelled oestrone and NADP3H in equimolar amounts; the radioactivity associated with NADP3H was used to quantify 17β-HSOR activity. Activity of 17β-HSOR was present in microsomes of all the tissues evaluated. The specific activity of the enzyme was highest in liver and placental microsomes. The interconversion of oestradiol and oestrone in microsomal fractions of nine different fetal tissues was studied by the use of substrates labelled with tritium at stable nuclear positions ([6,7-3H]oestradiol and [6,7-3H]oestrone). The products, [3H]oestrone and [3H]oestradiol, were quantified by the use of established techniques; other metabolites formed in these incubations were not identified. The reductive pathway of metabolism (oestrone to oestradiol) appeared to be favoured in microsomal fractions prepared from placenta, fetal zone of the adrenal gland and, possibly, lung. The oxidative pathway (oestradiol to oestrone) appeared to be favoured by microsomes prepared from liver, intestine, stomach, kidney, brain and heart. 17β-HSOR activity in fetal liver also was assessed by the use of fresh and frozen-thawed tissue, homogenate, subcellular fractions, and, also, in primary hepatocytes maintained in culture; the specific activity of the enzyme was highest in the microsomal fraction of liver tissue and 17β-HSOR activity in liver microsomes was linear with time of incubation up to 1 h. In hepatocytes, the enzymatic activity was linear with time of incubation up to 2 h and with cell num er up to 2.5 x 105 cells/ml; the apparent Michaelis constant of hepatocyte 17β-HSOR for oestradiol was 11 μmol/l. The specific activity of 17β-HSOR did not change after pretreatment of hepatocytes for 24 h with insulin, glucagon or dexamethasone.

Original languageEnglish (US)
Pages (from-to)509-518
Number of pages10
JournalJournal of Endocrinology
Volume123
Issue number3
StatePublished - 1989

Fingerprint

Hydroxysteroids
Estrone
Estradiol
Oxidoreductases
Fetus
Hepatocytes
Liver Microsomes
Enzymes
Androstenediol
Fetal Movement
Subcellular Fractions
Dehydroepiandrosterone
Tritium
Androstenedione
Liver
Second Pregnancy Trimester
First Pregnancy Trimester
Adrenal Glands
Microsomes
Glucagon

ASJC Scopus subject areas

  • Endocrinology

Cite this

Activity of 17β-hydroxysteroid oxidoreductase in tissues of the human fetus. / Milewich, L.; MacDonald, P. C.; Carr, B. R.

In: Journal of Endocrinology, Vol. 123, No. 3, 1989, p. 509-518.

Research output: Contribution to journalArticle

Milewich, L. ; MacDonald, P. C. ; Carr, B. R. / Activity of 17β-hydroxysteroid oxidoreductase in tissues of the human fetus. In: Journal of Endocrinology. 1989 ; Vol. 123, No. 3. pp. 509-518.
@article{6809a42bfc114ad6bb7495685ba25733,
title = "Activity of 17β-hydroxysteroid oxidoreductase in tissues of the human fetus",
abstract = "The interconversion of oestrone and oestradiol, androstenedione and testosterone, and dehydroepiandrosterone and 5-androstene-3β,17β-diol in mammalian tissues is catalysed by 17β-hydroxysteroid oxidoreductase (17β-HSOR). To identify tissue sites of 17β-HSOR activity in the human fetus, microsomal fractions from 15 different fetal tissues obtained from first and second trimester pregnancies were used for evaluation of enzymatic activity by use of [17α-3H]oestradiol as the substrate and NADP+ as the co-factor. With these reagents, the enzyme-catalysed reaction led to the production of both non-radiolabelled oestrone and NADP3H in equimolar amounts; the radioactivity associated with NADP3H was used to quantify 17β-HSOR activity. Activity of 17β-HSOR was present in microsomes of all the tissues evaluated. The specific activity of the enzyme was highest in liver and placental microsomes. The interconversion of oestradiol and oestrone in microsomal fractions of nine different fetal tissues was studied by the use of substrates labelled with tritium at stable nuclear positions ([6,7-3H]oestradiol and [6,7-3H]oestrone). The products, [3H]oestrone and [3H]oestradiol, were quantified by the use of established techniques; other metabolites formed in these incubations were not identified. The reductive pathway of metabolism (oestrone to oestradiol) appeared to be favoured in microsomal fractions prepared from placenta, fetal zone of the adrenal gland and, possibly, lung. The oxidative pathway (oestradiol to oestrone) appeared to be favoured by microsomes prepared from liver, intestine, stomach, kidney, brain and heart. 17β-HSOR activity in fetal liver also was assessed by the use of fresh and frozen-thawed tissue, homogenate, subcellular fractions, and, also, in primary hepatocytes maintained in culture; the specific activity of the enzyme was highest in the microsomal fraction of liver tissue and 17β-HSOR activity in liver microsomes was linear with time of incubation up to 1 h. In hepatocytes, the enzymatic activity was linear with time of incubation up to 2 h and with cell num er up to 2.5 x 105 cells/ml; the apparent Michaelis constant of hepatocyte 17β-HSOR for oestradiol was 11 μmol/l. The specific activity of 17β-HSOR did not change after pretreatment of hepatocytes for 24 h with insulin, glucagon or dexamethasone.",
author = "L. Milewich and MacDonald, {P. C.} and Carr, {B. R.}",
year = "1989",
language = "English (US)",
volume = "123",
pages = "509--518",
journal = "Journal of Endocrinology",
issn = "0022-0795",
publisher = "Society for Endocrinology",
number = "3",

}

TY - JOUR

T1 - Activity of 17β-hydroxysteroid oxidoreductase in tissues of the human fetus

AU - Milewich, L.

AU - MacDonald, P. C.

AU - Carr, B. R.

PY - 1989

Y1 - 1989

N2 - The interconversion of oestrone and oestradiol, androstenedione and testosterone, and dehydroepiandrosterone and 5-androstene-3β,17β-diol in mammalian tissues is catalysed by 17β-hydroxysteroid oxidoreductase (17β-HSOR). To identify tissue sites of 17β-HSOR activity in the human fetus, microsomal fractions from 15 different fetal tissues obtained from first and second trimester pregnancies were used for evaluation of enzymatic activity by use of [17α-3H]oestradiol as the substrate and NADP+ as the co-factor. With these reagents, the enzyme-catalysed reaction led to the production of both non-radiolabelled oestrone and NADP3H in equimolar amounts; the radioactivity associated with NADP3H was used to quantify 17β-HSOR activity. Activity of 17β-HSOR was present in microsomes of all the tissues evaluated. The specific activity of the enzyme was highest in liver and placental microsomes. The interconversion of oestradiol and oestrone in microsomal fractions of nine different fetal tissues was studied by the use of substrates labelled with tritium at stable nuclear positions ([6,7-3H]oestradiol and [6,7-3H]oestrone). The products, [3H]oestrone and [3H]oestradiol, were quantified by the use of established techniques; other metabolites formed in these incubations were not identified. The reductive pathway of metabolism (oestrone to oestradiol) appeared to be favoured in microsomal fractions prepared from placenta, fetal zone of the adrenal gland and, possibly, lung. The oxidative pathway (oestradiol to oestrone) appeared to be favoured by microsomes prepared from liver, intestine, stomach, kidney, brain and heart. 17β-HSOR activity in fetal liver also was assessed by the use of fresh and frozen-thawed tissue, homogenate, subcellular fractions, and, also, in primary hepatocytes maintained in culture; the specific activity of the enzyme was highest in the microsomal fraction of liver tissue and 17β-HSOR activity in liver microsomes was linear with time of incubation up to 1 h. In hepatocytes, the enzymatic activity was linear with time of incubation up to 2 h and with cell num er up to 2.5 x 105 cells/ml; the apparent Michaelis constant of hepatocyte 17β-HSOR for oestradiol was 11 μmol/l. The specific activity of 17β-HSOR did not change after pretreatment of hepatocytes for 24 h with insulin, glucagon or dexamethasone.

AB - The interconversion of oestrone and oestradiol, androstenedione and testosterone, and dehydroepiandrosterone and 5-androstene-3β,17β-diol in mammalian tissues is catalysed by 17β-hydroxysteroid oxidoreductase (17β-HSOR). To identify tissue sites of 17β-HSOR activity in the human fetus, microsomal fractions from 15 different fetal tissues obtained from first and second trimester pregnancies were used for evaluation of enzymatic activity by use of [17α-3H]oestradiol as the substrate and NADP+ as the co-factor. With these reagents, the enzyme-catalysed reaction led to the production of both non-radiolabelled oestrone and NADP3H in equimolar amounts; the radioactivity associated with NADP3H was used to quantify 17β-HSOR activity. Activity of 17β-HSOR was present in microsomes of all the tissues evaluated. The specific activity of the enzyme was highest in liver and placental microsomes. The interconversion of oestradiol and oestrone in microsomal fractions of nine different fetal tissues was studied by the use of substrates labelled with tritium at stable nuclear positions ([6,7-3H]oestradiol and [6,7-3H]oestrone). The products, [3H]oestrone and [3H]oestradiol, were quantified by the use of established techniques; other metabolites formed in these incubations were not identified. The reductive pathway of metabolism (oestrone to oestradiol) appeared to be favoured in microsomal fractions prepared from placenta, fetal zone of the adrenal gland and, possibly, lung. The oxidative pathway (oestradiol to oestrone) appeared to be favoured by microsomes prepared from liver, intestine, stomach, kidney, brain and heart. 17β-HSOR activity in fetal liver also was assessed by the use of fresh and frozen-thawed tissue, homogenate, subcellular fractions, and, also, in primary hepatocytes maintained in culture; the specific activity of the enzyme was highest in the microsomal fraction of liver tissue and 17β-HSOR activity in liver microsomes was linear with time of incubation up to 1 h. In hepatocytes, the enzymatic activity was linear with time of incubation up to 2 h and with cell num er up to 2.5 x 105 cells/ml; the apparent Michaelis constant of hepatocyte 17β-HSOR for oestradiol was 11 μmol/l. The specific activity of 17β-HSOR did not change after pretreatment of hepatocytes for 24 h with insulin, glucagon or dexamethasone.

UR - http://www.scopus.com/inward/record.url?scp=0024306944&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0024306944&partnerID=8YFLogxK

M3 - Article

C2 - 2558148

AN - SCOPUS:0024306944

VL - 123

SP - 509

EP - 518

JO - Journal of Endocrinology

JF - Journal of Endocrinology

SN - 0022-0795

IS - 3

ER -