Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancer-Like Phenotype

Gokhan Bahcecioglu, Xiaoshan Yue, Erin Howe, Ian Guldner, M. Sharon Stack, Harikrishna Nakshatri, Siyuan Zhang, Pinar Zorlutuna

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Age is a major risk factor for cancer. While the importance of age related genetic alterations in cells on cancer progression is well documented, the effect of aging extracellular matrix (ECM) has been overlooked. This study shows that the aging breast ECM alone is sufficient to drive normal human mammary epithelial cells (KTB21) to a more invasive and cancer-like phenotype, while promoting motility and invasiveness in MDA-MB-231 cells. Decellularized breast matrix from aged mice leads to loss of E-cadherin membrane localization in KTB21 cells, increased cell motility and invasion, and increased production of inflammatory cytokines and cancer-related proteins. The aged matrix upregulates cancer-related genes in KTB21 cells and enriches a cell subpopulation highly expressing epithelial-mesenchymal transition-related genes. Lysyl oxidase knockdown reverts the aged matrix-induced changes to the young levels; it relocalizes E-cadherin to cell membrane, and reduces cell motility, invasion, and cytokine production. These results show for the first time that the aging ECM harbors key biochemical, physical, and mechanical cues contributing to invasive and cancer-like behavior in healthy and cancer mammary cells. Differential response of cells to young and aged ECMs can lead to identification of new targets for cancer treatment and prevention.

Original languageEnglish (US)
Article number2100128
JournalAdvanced Science
Volume8
Issue number22
DOIs
StatePublished - Nov 17 2021
Externally publishedYes

Keywords

  • aging
  • breast cancer
  • epithelial-mesenchymal transition
  • extracellular matrix
  • lysyl oxidase

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • General Chemical Engineering
  • General Materials Science
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • General Engineering
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancer-Like Phenotype'. Together they form a unique fingerprint.

Cite this