Algorithmic scatter correction based on physical model and statistical iterative reconstruction for dual energy cone beam CT

Shaojie Chang, Ti Bai, Xi Chen, Xuanqin Mou

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Dual energy cone beam computed tomography (DE-CBCT) can provide more accurate material characterization than conventional CT by taking advantages of two sets of projections with high and low energies. X-ray scatter leads to erroneous values of the DE-CBCT reconstructed images. Moreover, the reconstructed image of DECT is extremely sensitive to noise. Iterative reconstruction methods using regularization are capable to suppress the noise effects and hence improve the image quality. In this paper, we develop an algorithmic scatter correction based on physical model and statistical iterative reconstruction for DE-CBCT. With the assumption that the attenuation coefficients of the soft tissues are relatively stable and uniform and the scatter component is dominated by low frequency signal, scatter components were calculated while updating the reconstructed images in each iteration. Finally, the CBCT image was reconstructed by scatter corrected projections using statistical iterative reconstruction algorithm. Experiment shows that the proposed method can effectively remove the artifacts caused by x-ray scatter. The CT value accuracy in the reconstructed images has been improved.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2018
Subtitle of host publicationPhysics of Medical Imaging
EditorsTaly Gilat Schmidt, Guang-Hong Chen, Joseph Y. Lo
PublisherSPIE
ISBN (Electronic)9781510616356
DOIs
StatePublished - 2018
Externally publishedYes
EventMedical Imaging 2018: Physics of Medical Imaging - Houston, United States
Duration: Feb 12 2018Feb 15 2018

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10573
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2018: Physics of Medical Imaging
Country/TerritoryUnited States
CityHouston
Period2/12/182/15/18

Keywords

  • Dual energy CBCT
  • scatter correction
  • statistical iterative reconstruction

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Algorithmic scatter correction based on physical model and statistical iterative reconstruction for dual energy cone beam CT'. Together they form a unique fingerprint.

Cite this