Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: Implications for regulation of actin-myosin interaction

H. Lee Sweeney, James T. Stull

Research output: Contribution to journalArticle

189 Citations (Scopus)

Abstract

Myosin light chain phosphorylation in permeable skeletal muscle fibers increases isometric force and the rate of force production at submaximal levels of calcium activation; myosin light chain phosphorylation may underlie the increased rate and extent of force production associated with isometric twitch potentiation in intact fibers. To understand the mechanism by which myosin light chain phosphorylation manifests these effects, we have measured isometric force, isometric stiffness, rate of isometric force redevelopment after isotonic shortening, and isometric ATPase activity in permeabilized rabbit psoas muscle fibers. These measurements were made in the presence and absence of myosin light chain phosphorylation over a range of calcium concentrations that caused various levels of activation. The results were analyzed with a two-state cross-bridge cycle model as suggested by Brenner [Brenner, B. (1988) Proc. Natl. Acad. Sci. USA 85, 3265-3269]. The results indicate that myosin light chain phosphorylation exerts its effect on force generation and the isometric rate of force redevelopment in striated muscle through a single mechanism, namely, by increasing the rate constant describing the transition from non-force-generating crossbridges to force-generating states (fapp). gapp, the reverse rate constant, is unaffected by phosphorylation as are the number of cycling cross-bridges. Since both calcium and myosin light chain phosphorylation increase fapp, the possibility is considered that modulation of fapp may represent a general mechanism for regulating force in actin-myosin systems.

Original languageEnglish (US)
Pages (from-to)414-418
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume87
Issue number1
StatePublished - 1990

Fingerprint

Myosin Light Chains
Myosins
Actins
Skeletal Muscle
Phosphorylation
Rabbits
Calcium
Psoas Muscles
Striated Muscle
Skeletal Muscle Fibers
Adenosine Triphosphatases

Keywords

  • Contraction
  • Modulation of force

ASJC Scopus subject areas

  • Genetics
  • General

Cite this

@article{ae0f57008dde4b91a6f489bd96eefd66,
title = "Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: Implications for regulation of actin-myosin interaction",
abstract = "Myosin light chain phosphorylation in permeable skeletal muscle fibers increases isometric force and the rate of force production at submaximal levels of calcium activation; myosin light chain phosphorylation may underlie the increased rate and extent of force production associated with isometric twitch potentiation in intact fibers. To understand the mechanism by which myosin light chain phosphorylation manifests these effects, we have measured isometric force, isometric stiffness, rate of isometric force redevelopment after isotonic shortening, and isometric ATPase activity in permeabilized rabbit psoas muscle fibers. These measurements were made in the presence and absence of myosin light chain phosphorylation over a range of calcium concentrations that caused various levels of activation. The results were analyzed with a two-state cross-bridge cycle model as suggested by Brenner [Brenner, B. (1988) Proc. Natl. Acad. Sci. USA 85, 3265-3269]. The results indicate that myosin light chain phosphorylation exerts its effect on force generation and the isometric rate of force redevelopment in striated muscle through a single mechanism, namely, by increasing the rate constant describing the transition from non-force-generating crossbridges to force-generating states (fapp). gapp, the reverse rate constant, is unaffected by phosphorylation as are the number of cycling cross-bridges. Since both calcium and myosin light chain phosphorylation increase fapp, the possibility is considered that modulation of fapp may represent a general mechanism for regulating force in actin-myosin systems.",
keywords = "Contraction, Modulation of force",
author = "Sweeney, {H. Lee} and Stull, {James T.}",
year = "1990",
language = "English (US)",
volume = "87",
pages = "414--418",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "1",

}

TY - JOUR

T1 - Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle

T2 - Implications for regulation of actin-myosin interaction

AU - Sweeney, H. Lee

AU - Stull, James T.

PY - 1990

Y1 - 1990

N2 - Myosin light chain phosphorylation in permeable skeletal muscle fibers increases isometric force and the rate of force production at submaximal levels of calcium activation; myosin light chain phosphorylation may underlie the increased rate and extent of force production associated with isometric twitch potentiation in intact fibers. To understand the mechanism by which myosin light chain phosphorylation manifests these effects, we have measured isometric force, isometric stiffness, rate of isometric force redevelopment after isotonic shortening, and isometric ATPase activity in permeabilized rabbit psoas muscle fibers. These measurements were made in the presence and absence of myosin light chain phosphorylation over a range of calcium concentrations that caused various levels of activation. The results were analyzed with a two-state cross-bridge cycle model as suggested by Brenner [Brenner, B. (1988) Proc. Natl. Acad. Sci. USA 85, 3265-3269]. The results indicate that myosin light chain phosphorylation exerts its effect on force generation and the isometric rate of force redevelopment in striated muscle through a single mechanism, namely, by increasing the rate constant describing the transition from non-force-generating crossbridges to force-generating states (fapp). gapp, the reverse rate constant, is unaffected by phosphorylation as are the number of cycling cross-bridges. Since both calcium and myosin light chain phosphorylation increase fapp, the possibility is considered that modulation of fapp may represent a general mechanism for regulating force in actin-myosin systems.

AB - Myosin light chain phosphorylation in permeable skeletal muscle fibers increases isometric force and the rate of force production at submaximal levels of calcium activation; myosin light chain phosphorylation may underlie the increased rate and extent of force production associated with isometric twitch potentiation in intact fibers. To understand the mechanism by which myosin light chain phosphorylation manifests these effects, we have measured isometric force, isometric stiffness, rate of isometric force redevelopment after isotonic shortening, and isometric ATPase activity in permeabilized rabbit psoas muscle fibers. These measurements were made in the presence and absence of myosin light chain phosphorylation over a range of calcium concentrations that caused various levels of activation. The results were analyzed with a two-state cross-bridge cycle model as suggested by Brenner [Brenner, B. (1988) Proc. Natl. Acad. Sci. USA 85, 3265-3269]. The results indicate that myosin light chain phosphorylation exerts its effect on force generation and the isometric rate of force redevelopment in striated muscle through a single mechanism, namely, by increasing the rate constant describing the transition from non-force-generating crossbridges to force-generating states (fapp). gapp, the reverse rate constant, is unaffected by phosphorylation as are the number of cycling cross-bridges. Since both calcium and myosin light chain phosphorylation increase fapp, the possibility is considered that modulation of fapp may represent a general mechanism for regulating force in actin-myosin systems.

KW - Contraction

KW - Modulation of force

UR - http://www.scopus.com/inward/record.url?scp=0025061076&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025061076&partnerID=8YFLogxK

M3 - Article

C2 - 2136951

AN - SCOPUS:0025061076

VL - 87

SP - 414

EP - 418

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 1

ER -