Aprotinin reduces nitric oxide production in vitro and in vivo in a dose-dependent manner

N. L. Bruda, B. J. Hurlbert, G. E. Hill

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

1. Cardiopulmonary bypass is associated with an increase in nitric oxide concentrations, and plasma levels of tumour necrosis factor and interleukin-1. Aprotinin, a serine protease inhibitor, commonly used during cardiopulmonary bypass to reduce blood loss, has been demonstrated to exhibit significant anti-inflammatory effects during and after cardiopulmonary bypass. 2. Airway nitric oxide was measured during cardiopulmonary bypass in 10 controls (Group 1), 10 subjects receiving half-dose aprotinin (Group 2) and 10 patients receiving full-dose aprotinin (Group 3). In vitro, a murine bronchial epithelial cell line (LA-4) was cultured with cytomix (a combination of tumour necrosis factor, interleukin-1, and (γ-interferon) with and without aprotinin in increasing concentrations. Nitrite concentrations, the stable and measureable end-product of nitric oxide oxidative metabolism, were measured in the culture supernatant by chemiluminescence. 3. Airway nitric oxide concentrations were increased after 50 min cardiopulmonary bypass compared with that measured at 5 min in controls (53 ± 5 versus 29 ± 3 ppb, P < 0.05) but not in the aprotinin-treated groups (25 ± 4 versus 14 ± 5, Group 2; 21 ± 6 versus 15 ± 3 ppb, Group 3). 4. In a dose-dependent manner, nitrite levels (means ± S.E.M.) were significantly reduced by aprotinin at 500 and 1000 units/ml when compared with cells cultured in the presence of cytomix alone (P < 0.05). 5. These data demonstrate that aprotinin, in a dose-responsive manner, reduces nitric oxide production in vivo and reduces cytokine-induced nitrite production by murine bronchial epithelial cells in vitro. Since increased airway nitric oxide is found in inflammatory lung diseases, like asthma, and anti-inflammatory therapy reduces the concentration of airway nitric oxide, these data support the concept that aprotinin is anti-inflammatory during cardiopulmonary bypass.

Original languageEnglish (US)
Pages (from-to)505-509
Number of pages5
JournalClinical Science
Volume94
Issue number5
StatePublished - 1998

Fingerprint

Aprotinin
Nitric Oxide
Cardiopulmonary Bypass
Nitrites
Anti-Inflammatory Agents
Interleukin-1
Tumor Necrosis Factor-alpha
Epithelial Cells
Serine Proteinase Inhibitors
In Vitro Techniques
Luminescence
Interferons
Lung Diseases
Cultured Cells
Asthma
Cytokines
Cell Line
Control Groups

Keywords

  • Aprotinin
  • Cardiopulmonary bypass
  • Nitric oxide

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Aprotinin reduces nitric oxide production in vitro and in vivo in a dose-dependent manner. / Bruda, N. L.; Hurlbert, B. J.; Hill, G. E.

In: Clinical Science, Vol. 94, No. 5, 1998, p. 505-509.

Research output: Contribution to journalArticle

@article{449f3a826f094f0b90bbd31c049ee4d9,
title = "Aprotinin reduces nitric oxide production in vitro and in vivo in a dose-dependent manner",
abstract = "1. Cardiopulmonary bypass is associated with an increase in nitric oxide concentrations, and plasma levels of tumour necrosis factor and interleukin-1. Aprotinin, a serine protease inhibitor, commonly used during cardiopulmonary bypass to reduce blood loss, has been demonstrated to exhibit significant anti-inflammatory effects during and after cardiopulmonary bypass. 2. Airway nitric oxide was measured during cardiopulmonary bypass in 10 controls (Group 1), 10 subjects receiving half-dose aprotinin (Group 2) and 10 patients receiving full-dose aprotinin (Group 3). In vitro, a murine bronchial epithelial cell line (LA-4) was cultured with cytomix (a combination of tumour necrosis factor, interleukin-1, and (γ-interferon) with and without aprotinin in increasing concentrations. Nitrite concentrations, the stable and measureable end-product of nitric oxide oxidative metabolism, were measured in the culture supernatant by chemiluminescence. 3. Airway nitric oxide concentrations were increased after 50 min cardiopulmonary bypass compared with that measured at 5 min in controls (53 ± 5 versus 29 ± 3 ppb, P < 0.05) but not in the aprotinin-treated groups (25 ± 4 versus 14 ± 5, Group 2; 21 ± 6 versus 15 ± 3 ppb, Group 3). 4. In a dose-dependent manner, nitrite levels (means ± S.E.M.) were significantly reduced by aprotinin at 500 and 1000 units/ml when compared with cells cultured in the presence of cytomix alone (P < 0.05). 5. These data demonstrate that aprotinin, in a dose-responsive manner, reduces nitric oxide production in vivo and reduces cytokine-induced nitrite production by murine bronchial epithelial cells in vitro. Since increased airway nitric oxide is found in inflammatory lung diseases, like asthma, and anti-inflammatory therapy reduces the concentration of airway nitric oxide, these data support the concept that aprotinin is anti-inflammatory during cardiopulmonary bypass.",
keywords = "Aprotinin, Cardiopulmonary bypass, Nitric oxide",
author = "Bruda, {N. L.} and Hurlbert, {B. J.} and Hill, {G. E.}",
year = "1998",
language = "English (US)",
volume = "94",
pages = "505--509",
journal = "Clinical Science",
issn = "0143-5221",
publisher = "Portland Press Ltd.",
number = "5",

}

TY - JOUR

T1 - Aprotinin reduces nitric oxide production in vitro and in vivo in a dose-dependent manner

AU - Bruda, N. L.

AU - Hurlbert, B. J.

AU - Hill, G. E.

PY - 1998

Y1 - 1998

N2 - 1. Cardiopulmonary bypass is associated with an increase in nitric oxide concentrations, and plasma levels of tumour necrosis factor and interleukin-1. Aprotinin, a serine protease inhibitor, commonly used during cardiopulmonary bypass to reduce blood loss, has been demonstrated to exhibit significant anti-inflammatory effects during and after cardiopulmonary bypass. 2. Airway nitric oxide was measured during cardiopulmonary bypass in 10 controls (Group 1), 10 subjects receiving half-dose aprotinin (Group 2) and 10 patients receiving full-dose aprotinin (Group 3). In vitro, a murine bronchial epithelial cell line (LA-4) was cultured with cytomix (a combination of tumour necrosis factor, interleukin-1, and (γ-interferon) with and without aprotinin in increasing concentrations. Nitrite concentrations, the stable and measureable end-product of nitric oxide oxidative metabolism, were measured in the culture supernatant by chemiluminescence. 3. Airway nitric oxide concentrations were increased after 50 min cardiopulmonary bypass compared with that measured at 5 min in controls (53 ± 5 versus 29 ± 3 ppb, P < 0.05) but not in the aprotinin-treated groups (25 ± 4 versus 14 ± 5, Group 2; 21 ± 6 versus 15 ± 3 ppb, Group 3). 4. In a dose-dependent manner, nitrite levels (means ± S.E.M.) were significantly reduced by aprotinin at 500 and 1000 units/ml when compared with cells cultured in the presence of cytomix alone (P < 0.05). 5. These data demonstrate that aprotinin, in a dose-responsive manner, reduces nitric oxide production in vivo and reduces cytokine-induced nitrite production by murine bronchial epithelial cells in vitro. Since increased airway nitric oxide is found in inflammatory lung diseases, like asthma, and anti-inflammatory therapy reduces the concentration of airway nitric oxide, these data support the concept that aprotinin is anti-inflammatory during cardiopulmonary bypass.

AB - 1. Cardiopulmonary bypass is associated with an increase in nitric oxide concentrations, and plasma levels of tumour necrosis factor and interleukin-1. Aprotinin, a serine protease inhibitor, commonly used during cardiopulmonary bypass to reduce blood loss, has been demonstrated to exhibit significant anti-inflammatory effects during and after cardiopulmonary bypass. 2. Airway nitric oxide was measured during cardiopulmonary bypass in 10 controls (Group 1), 10 subjects receiving half-dose aprotinin (Group 2) and 10 patients receiving full-dose aprotinin (Group 3). In vitro, a murine bronchial epithelial cell line (LA-4) was cultured with cytomix (a combination of tumour necrosis factor, interleukin-1, and (γ-interferon) with and without aprotinin in increasing concentrations. Nitrite concentrations, the stable and measureable end-product of nitric oxide oxidative metabolism, were measured in the culture supernatant by chemiluminescence. 3. Airway nitric oxide concentrations were increased after 50 min cardiopulmonary bypass compared with that measured at 5 min in controls (53 ± 5 versus 29 ± 3 ppb, P < 0.05) but not in the aprotinin-treated groups (25 ± 4 versus 14 ± 5, Group 2; 21 ± 6 versus 15 ± 3 ppb, Group 3). 4. In a dose-dependent manner, nitrite levels (means ± S.E.M.) were significantly reduced by aprotinin at 500 and 1000 units/ml when compared with cells cultured in the presence of cytomix alone (P < 0.05). 5. These data demonstrate that aprotinin, in a dose-responsive manner, reduces nitric oxide production in vivo and reduces cytokine-induced nitrite production by murine bronchial epithelial cells in vitro. Since increased airway nitric oxide is found in inflammatory lung diseases, like asthma, and anti-inflammatory therapy reduces the concentration of airway nitric oxide, these data support the concept that aprotinin is anti-inflammatory during cardiopulmonary bypass.

KW - Aprotinin

KW - Cardiopulmonary bypass

KW - Nitric oxide

UR - http://www.scopus.com/inward/record.url?scp=0031902013&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031902013&partnerID=8YFLogxK

M3 - Article

VL - 94

SP - 505

EP - 509

JO - Clinical Science

JF - Clinical Science

SN - 0143-5221

IS - 5

ER -