Architectural configurations, atlas granularity and functional connectivity with diagnostic value in Autism Spectrum Disorder

Cooper J. Mellema, Alex Treacher, Kevin P. Nguyen, Albert Montillo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Currently, the diagnosis of Autism Spectrum Disorder (ASD) is dependent upon a subjective, time-consuming evaluation of behavioral tests by an expert clinician. Non-invasive functional MRI (fMRI) characterizes brain connectivity and may be used to inform diagnoses and democratize medicine. However, successful construction of predictive models, such as deep learning models, from fMRI requires addressing key choices about the model's architecture, including the number of layers and number of neurons per layer. Meanwhile, deriving functional connectivity (FC) features from fMRI requires choosing an atlas with an appropriate level of granularity. Once an accurate diagnostic model has been built, it is vital to determine which features are predictive of ASD and if similar features are learned across atlas granularity levels. Identifying new important features extends our understanding of the biological underpinnings of ASD, while identifying features that corroborate past findings and extend across atlas levels instills model confidence. To identify aptly suited architectural configurations, probability distributions of the configurations of high versus low performing models are compared. To determine the effect of atlas granularity, connectivity features are derived from atlases with 3 levels of granularity and important features are ranked with permutation feature importance. Results show the highest performing models use between 2-4 hidden layers and 16-64 neurons per layer, granularity dependent. Connectivity features identified as important across all 3 atlas granularity levels include FC to the supplementary motor gyrus and language association cortex, regions whose abnormal development are associated with deficits in social and sensory processing common in ASD. Importantly, the cerebellum, often not included in functional analyses, is also identified as a region whose abnormal connectivity is highly predictive of ASD. Results of this study identify important regions to include in future studies of ASD, help assist in the selection of network architectures, and help identify appropriate levels of granularity to facilitate the development of accurate diagnostic models of ASD.

Original languageEnglish (US)
Title of host publicationISBI 2020 - 2020 IEEE International Symposium on Biomedical Imaging
PublisherIEEE Computer Society
Pages1022-1025
Number of pages4
ISBN (Electronic)9781538693308
DOIs
StatePublished - Apr 2020
Event17th IEEE International Symposium on Biomedical Imaging, ISBI 2020 - Iowa City, United States
Duration: Apr 3 2020Apr 7 2020

Publication series

NameProceedings - International Symposium on Biomedical Imaging
Volume2020-April
ISSN (Print)1945-7928
ISSN (Electronic)1945-8452

Conference

Conference17th IEEE International Symposium on Biomedical Imaging, ISBI 2020
CountryUnited States
CityIowa City
Period4/3/204/7/20

Keywords

  • Autism
  • fMRI
  • functional neuroimaging
  • hyper parameter optimization
  • Interpretable deep learning

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Architectural configurations, atlas granularity and functional connectivity with diagnostic value in Autism Spectrum Disorder'. Together they form a unique fingerprint.

  • Cite this

    Mellema, C. J., Treacher, A., Nguyen, K. P., & Montillo, A. (2020). Architectural configurations, atlas granularity and functional connectivity with diagnostic value in Autism Spectrum Disorder. In ISBI 2020 - 2020 IEEE International Symposium on Biomedical Imaging (pp. 1022-1025). [9098555] (Proceedings - International Symposium on Biomedical Imaging; Vol. 2020-April). IEEE Computer Society. https://doi.org/10.1109/ISBI45749.2020.9098555