ARF6 and EFA6A regulate the development and maintenance of dendritic spines

Seungwon Choi, Jaewon Ko, Jae Ran Lee, Woo Lee Hyun, Karam Kim, Sun Chung Hye, Hyun Kim, Eunjoon Kim

Research output: Contribution to journalArticlepeer-review

85 Scopus citations

Abstract

The cellular and molecular mechanisms underlying the development and maintenance of dendritic spines are not fully understood. ADP-ribosylation factor 6 (ARF6) is a small GTPase known to regulate actin remodeling and membrane traffic. Here, we report involvement of ARF6 and exchange factor for ARF6 (EFA6A) in the regulation of spine development and maintenance. An active form of ARF6 promotes the formation of dendritic spines at the expense of filopodia. EFA6A promotes spine formation in an ARF6 activation-dependent manner. Knockdown of ARF6 and EFA6A by small interfering RNA decreases spine formation. Live imaging indicates that ARF6 knockdown decreases the conversion of filopodia to spines and the stability of early spines. The spine-promoting effect of ARF6 is partially blocked by Rac1. ARF6 and EFA6A protect mature spines from inactivity-induced destabilization. These results suggest that ARF6 and EFA6A may regulate the conversion of filopodia to spines and the stability of both early and mature spines.

Original languageEnglish (US)
Pages (from-to)4811-4819
Number of pages9
JournalJournal of Neuroscience
Volume26
Issue number18
DOIs
StatePublished - 2006
Externally publishedYes

Keywords

  • ARF6
  • EFA6A
  • Filopodia
  • Rac1
  • Spine
  • Synapse

ASJC Scopus subject areas

  • General Neuroscience

Fingerprint

Dive into the research topics of 'ARF6 and EFA6A regulate the development and maintenance of dendritic spines'. Together they form a unique fingerprint.

Cite this