Assessing therapeutic efficacy of MEK inhibition in a KrasG12C-driven mouse model of lung cancer

Shuai Li, Shengwu Liu, Jiehui Deng, Esra A. Akbay, Josephine Hai, Chiara Ambrogio, Long Zhang, Fangyu Zhou, Russell W. Jenkins, Dennis O. Adeegbe, Peng Gao, Xiaoen Wang, Cloud P. Paweletz, Grit S. Herter-Sprie, Ting Chen, Laura Gutierrez-Quiceno, Yanxi Zhang, Ashley A. Merlino, Max M. Quinn, Yu ZengXiaoting Yu, Yuting Liu, Lichao Fan, Andrew J. Aguirre, David A. Barbie, Xianghua Yi, Kwok Kin Wong

Research output: Contribution to journalArticle

9 Scopus citations

Abstract

Purpose: Despite the challenge to directly target mutant KRAS due to its high GTP affinity, some agents are under development against downstream signaling pathways, such as MEK inhibitors. However, it remains controversial whether MEK inhibitors can boost current chemotherapy in KRAS-mutant lung tumors in clinic. Considering the genomic heterogeneity among patients with lung cancer, it is valuable to test potential therapeutics in KRAS mutation-driven mouse models. Experimental Design: We first compared the pERK1/2 level in lung cancer samples with different KRAS substitutions and generated a new genetically engineered mouse model whose tumor was driven by KRASG12C, the most common KRAS mutation in lung cancer. Next, we evaluated the efficacy of selumetinib or its combination with chemotherapy, in KRASG12C tumors compared with KRASG12D tumors. Moreover, we generated KRASG12C/ p53R270H model to explore the role of a dominant negative p53 mutation detected in patients in responsiveness to MEK inhibition. Results: We determined higher pERK1/2 in KRASG12C lung tumors compared with KRASG12D. Using mouse models, we further identified that KRASG12C tumors are significantly more sensitive to selumetinib compared with KrasG12D tumors. MEK inhibition significantly increased chemotherapeutic efficacy and progression-free survival of KRASG12C mice. Interestingly, p53 co-mutation rendered KRASG12C lung tumors less sensitive to combination treatment with selumetinib and chemotherapy. Conclusions: Our data demonstrate that unique KRAS mutations and concurrent mutations in tumor-suppressor genes are important factors for lung tumor responses to MEK inhibitor. Our preclinical study supports further clinical evaluation of combined MEK inhibition and chemotherapy for lung cancer patients harboring KRASG12C and wild-type p53 status.

Original languageEnglish (US)
Pages (from-to)4854-4864
Number of pages11
JournalClinical Cancer Research
Volume24
Issue number19
DOIs
StatePublished - Oct 1 2018

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'Assessing therapeutic efficacy of MEK inhibition in a Kras<sup>G12C</sup>-driven mouse model of lung cancer'. Together they form a unique fingerprint.

  • Cite this

    Li, S., Liu, S., Deng, J., Akbay, E. A., Hai, J., Ambrogio, C., Zhang, L., Zhou, F., Jenkins, R. W., Adeegbe, D. O., Gao, P., Wang, X., Paweletz, C. P., Herter-Sprie, G. S., Chen, T., Gutierrez-Quiceno, L., Zhang, Y., Merlino, A. A., Quinn, M. M., ... Wong, K. K. (2018). Assessing therapeutic efficacy of MEK inhibition in a KrasG12C-driven mouse model of lung cancer. Clinical Cancer Research, 24(19), 4854-4864. https://doi.org/10.1158/1078-0432.CCR-17-3438