Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli

Matthew Walters, Vanessa Sperandio

Research output: Contribution to journalArticle

110 Citations (Scopus)

Abstract

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for causing outbreaks of bloody diarrhea and hemolytic-uremic syndrome throughout the world. The locus of enterocyte effacement (LEE) consists of five major operons and is required for the formation of attaching and effacing lesions that disrupt intestinal epithelial microvilli. We have previously reported that expression of EHEC LEE genes is regulated by the luxS quorum-sensing system. The luxS gene in EHEC affects the production of autoinducer 3 (AI-3), which activates the LEE. Epinephrine and norepinephrine also activate the LEE in a manner similar to that of AI-3. Previous studies of quorum-sensing regulation of LEE transcription have thus far been restricted to using reporter systems in an E. coli K-12 background. Here, we examined the kinetics of LEE gene transcription, protein expression, and function of the LEE type III secretion apparatus in wild-type (WT) EHEC and an isogenic luxS mutant. The results revealed that the luxS mutant had diminished transcription from the LEE promoters during the mid-exponential growth phase; decreased protein levels of EscJ, Tir, and EspA; and reduced secretion of EspA and EspB. The luxS mutation also caused a delay in the formation of attaching and effacing lesions on cultured epithelial cells compared to the wild type. Epinephrine enhanced LEE expression in both the WT and the luxS mutant, but the WT still exhibited greater LEE activation. The results suggest a possible synergistic relationship between AI-3 and epinephrine. The combined effects of these two signaling molecules may lead to greater LEE expression and a more efficient infection.

Original languageEnglish (US)
Pages (from-to)5445-5455
Number of pages11
JournalInfection and Immunity
Volume74
Issue number10
DOIs
StatePublished - Oct 2006

Fingerprint

Enterohemorrhagic Escherichia coli
Enterocytes
Epinephrine
Gene Expression
Quorum Sensing
Hemolytic-Uremic Syndrome
Escherichia coli O157
Operon
Microvilli
Genes
Disease Outbreaks
Cultured Cells
Diarrhea
Norepinephrine
Proteins
Epithelial Cells

ASJC Scopus subject areas

  • Immunology

Cite this

@article{b825ffd97c104234ad7fe4596e974644,
title = "Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli",
abstract = "Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for causing outbreaks of bloody diarrhea and hemolytic-uremic syndrome throughout the world. The locus of enterocyte effacement (LEE) consists of five major operons and is required for the formation of attaching and effacing lesions that disrupt intestinal epithelial microvilli. We have previously reported that expression of EHEC LEE genes is regulated by the luxS quorum-sensing system. The luxS gene in EHEC affects the production of autoinducer 3 (AI-3), which activates the LEE. Epinephrine and norepinephrine also activate the LEE in a manner similar to that of AI-3. Previous studies of quorum-sensing regulation of LEE transcription have thus far been restricted to using reporter systems in an E. coli K-12 background. Here, we examined the kinetics of LEE gene transcription, protein expression, and function of the LEE type III secretion apparatus in wild-type (WT) EHEC and an isogenic luxS mutant. The results revealed that the luxS mutant had diminished transcription from the LEE promoters during the mid-exponential growth phase; decreased protein levels of EscJ, Tir, and EspA; and reduced secretion of EspA and EspB. The luxS mutation also caused a delay in the formation of attaching and effacing lesions on cultured epithelial cells compared to the wild type. Epinephrine enhanced LEE expression in both the WT and the luxS mutant, but the WT still exhibited greater LEE activation. The results suggest a possible synergistic relationship between AI-3 and epinephrine. The combined effects of these two signaling molecules may lead to greater LEE expression and a more efficient infection.",
author = "Matthew Walters and Vanessa Sperandio",
year = "2006",
month = "10",
doi = "10.1128/IAI.00099-06",
language = "English (US)",
volume = "74",
pages = "5445--5455",
journal = "Infection and Immunity",
issn = "0019-9567",
publisher = "American Society for Microbiology",
number = "10",

}

TY - JOUR

T1 - Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli

AU - Walters, Matthew

AU - Sperandio, Vanessa

PY - 2006/10

Y1 - 2006/10

N2 - Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for causing outbreaks of bloody diarrhea and hemolytic-uremic syndrome throughout the world. The locus of enterocyte effacement (LEE) consists of five major operons and is required for the formation of attaching and effacing lesions that disrupt intestinal epithelial microvilli. We have previously reported that expression of EHEC LEE genes is regulated by the luxS quorum-sensing system. The luxS gene in EHEC affects the production of autoinducer 3 (AI-3), which activates the LEE. Epinephrine and norepinephrine also activate the LEE in a manner similar to that of AI-3. Previous studies of quorum-sensing regulation of LEE transcription have thus far been restricted to using reporter systems in an E. coli K-12 background. Here, we examined the kinetics of LEE gene transcription, protein expression, and function of the LEE type III secretion apparatus in wild-type (WT) EHEC and an isogenic luxS mutant. The results revealed that the luxS mutant had diminished transcription from the LEE promoters during the mid-exponential growth phase; decreased protein levels of EscJ, Tir, and EspA; and reduced secretion of EspA and EspB. The luxS mutation also caused a delay in the formation of attaching and effacing lesions on cultured epithelial cells compared to the wild type. Epinephrine enhanced LEE expression in both the WT and the luxS mutant, but the WT still exhibited greater LEE activation. The results suggest a possible synergistic relationship between AI-3 and epinephrine. The combined effects of these two signaling molecules may lead to greater LEE expression and a more efficient infection.

AB - Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for causing outbreaks of bloody diarrhea and hemolytic-uremic syndrome throughout the world. The locus of enterocyte effacement (LEE) consists of five major operons and is required for the formation of attaching and effacing lesions that disrupt intestinal epithelial microvilli. We have previously reported that expression of EHEC LEE genes is regulated by the luxS quorum-sensing system. The luxS gene in EHEC affects the production of autoinducer 3 (AI-3), which activates the LEE. Epinephrine and norepinephrine also activate the LEE in a manner similar to that of AI-3. Previous studies of quorum-sensing regulation of LEE transcription have thus far been restricted to using reporter systems in an E. coli K-12 background. Here, we examined the kinetics of LEE gene transcription, protein expression, and function of the LEE type III secretion apparatus in wild-type (WT) EHEC and an isogenic luxS mutant. The results revealed that the luxS mutant had diminished transcription from the LEE promoters during the mid-exponential growth phase; decreased protein levels of EscJ, Tir, and EspA; and reduced secretion of EspA and EspB. The luxS mutation also caused a delay in the formation of attaching and effacing lesions on cultured epithelial cells compared to the wild type. Epinephrine enhanced LEE expression in both the WT and the luxS mutant, but the WT still exhibited greater LEE activation. The results suggest a possible synergistic relationship between AI-3 and epinephrine. The combined effects of these two signaling molecules may lead to greater LEE expression and a more efficient infection.

UR - http://www.scopus.com/inward/record.url?scp=33749238211&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33749238211&partnerID=8YFLogxK

U2 - 10.1128/IAI.00099-06

DO - 10.1128/IAI.00099-06

M3 - Article

VL - 74

SP - 5445

EP - 5455

JO - Infection and Immunity

JF - Infection and Immunity

SN - 0019-9567

IS - 10

ER -