Automatic and near real-time stylistic behavior assessment in robotic surgery

M. Ershad, R. Rege, Ann Majewicz Fey

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


Purpose: Automatic skill evaluation is of great importance in surgical robotic training. Extensive research has been done to evaluate surgical skill, and a variety of quantitative metrics have been proposed. However, these methods primarily use expert selected features which may not capture latent information in movement data. In addition, these features are calculated over the entire task time and are provided to the user after the completion of the task. Thus, these quantitative metrics do not provide users with information on how to modify their movements to improve performance in real time. This study focuses on automatic stylistic behavior recognition that has the potential to be implemented in near real time. Methods: We propose a sparse coding framework for automatic stylistic behavior recognition in short time intervals using only position data from the hands, wrist, elbow, and shoulder. A codebook is built for each stylistic adjective using the positive and negative labels provided for each trial through crowd sourcing. Sparse code coefficients are obtained for short time intervals (0.25 s) in a trial using this codebook. A support vector machine classifier is trained and validated through tenfold cross-validation using the sparse codes from the training set. Results: The results indicate that the proposed dictionary learning method is able to assess stylistic behavior performance in near real time using user joint position data with improved accuracy compared to using PCA features or raw data. Conclusion: The possibility to automatically evaluate a trainee’s style of movement in short time intervals could provide the user with online customized feedback and thus improve performance during surgical tasks.

Original languageEnglish (US)
Pages (from-to)635-643
Number of pages9
JournalInternational Journal of Computer Assisted Radiology and Surgery
Issue number4
StatePublished - Apr 1 2019


  • Crowdsourcing
  • Robotic surgery
  • Surgical skill assessment

ASJC Scopus subject areas

  • Surgery
  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging
  • Computer Vision and Pattern Recognition
  • Computer Science Applications
  • Health Informatics
  • Computer Graphics and Computer-Aided Design


Dive into the research topics of 'Automatic and near real-time stylistic behavior assessment in robotic surgery'. Together they form a unique fingerprint.

Cite this