Bioconjugation of alkaline phosphatase to mechanically processed, aqueous suspendible electrospun polymer nanofibers for use in chemiluminescent detection assays

Sonny S. Mark, Samuel I. Stolper, Carla Baratti, Jason Y. Park, Maria A. Taku, Jorge J. Santiago-Avilés, Larry J. Kricka

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Aqueous suspendible polymer nanostructures were prepared by simple microtome processing of electrospun nylon 6 nanofibers and were used to immobilize calf intestinal alkaline phosphatase (ALP) by either covalent or noncovalent bioconjugation chemistries. It was found that noncovalent immobilization of ALP to the mechanically cut nanofibers (mean length ≈4 μm; mean diameter ≈80 nm) using a multi-stacked, layer-by-layer (LBL) approach with the cationic polymer Sapphire II™ resulted in the highest enzyme loading (48.1 ± 0.4 μg·mg-1 nanofiber) when compared to other covalent immobilization methods based on glutaraldehyde crosslinking. The biofunctionalized nanofibers were also characterized for their chemiluminescent activity with the dioxetane substrate, CSPD™. The results indicate that the kinetic parameters, Km and Vmax, for the catalytic activity of the nanostructure-bound ALP enzyme were influenced by the particular types of immobilization methods employed. In terms of the overall catalytic performance of the various immobilized ALP systems, a single-stacked LBL assembly approach resulted in the highest level of enzymatic activity per unit mass of nanofiber support. To the best of our knowledge, this study represents the first report examining the preparation of mechanically shortened, aqueous dispersed electrospun polymer nanofibers for potential application as enzyme scaffolds in chemiluminescent-based assay systems. A figure is presented.

Original languageEnglish (US)
Pages (from-to)484-498
Number of pages15
JournalMacromolecular Bioscience
Volume8
Issue number6
DOIs
StatePublished - Jun 11 2008

Keywords

  • Electrospinning
  • Microtome
  • Nanofiber
  • Nanotechnology
  • Nylon

ASJC Scopus subject areas

  • Biotechnology
  • Bioengineering
  • Biomaterials
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Bioconjugation of alkaline phosphatase to mechanically processed, aqueous suspendible electrospun polymer nanofibers for use in chemiluminescent detection assays'. Together they form a unique fingerprint.

Cite this