Biodegradation of Inion fast-absorbing biodegradable plates and screws

H. Wolfgang Losken, John A. Van Aalst, Mark P. Mooney, Virginia L. Godfrey, Tripti Burt, Sumeet Teotia, Shay B. Dean, Jonathan R. Moss, Reza Rahbar

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Biodegradable plates and screws are recommended for use in surgery of the craniofacial skeleton of children. To be effective and not interfere with growth of the child's skull, the plates must biodegrade sufficiently to release the holding power of the plate and screw within 1 year. It is also essential that excessive foreign body reaction and cyst formation does not occur when the plates and screws biodegrade. The purpose of this experimental study was to evaluate the rate of biodegradation of Inion CPS Baby biodegradable plates and screws under different clinical circumstances in the rabbit craniofacial skeleton and evaluate their efficacy for use in pediatric craniofacial surgery. Foreign body reaction would be evaluated. Inion baby plates and screws were tested in a rabbit model. Plates were applied to the frontal bone, over a bony defect of the parietal bone, to a nasal bone fracture, and inserted in the subcutaneous space over the occipital bone in thirty 6-week-old rabbits. Six rabbits were euthanized at 9, 12, 15, and 18 months' postoperative time point and examined for residual plates and screws. Bone from each surgical site was excised, fixed by immersion in 10% neutral-buffered formalin, decalcified in Immunocal solution, and examined by 7-μm paraffin sections stained with hematoxylin and eosin. At 9 months, the plates and screws had effectively biodegraded and no longer had holding power on the bones. Fragmentation of the implant material was noted. Residual implant material was still present on gross and histologic examination in rabbits at 9, 12, 15, and 18 months. Residue of a screw was still palpable in 1 rabbit at 18 months. There was no evidence of cyst formation in any of the examined specimens. Macrophages and giant cells were present in most of the specimens at 9, 12, 15, and 18 months. Findings from the current study revealed a relative short resorption time (9 mo) and normal inflammatory sequelae in an adult rabbit model. These findings suggest that these plates may be used safely in fixing the pediatric craniofacial skeleton.

Original languageEnglish (US)
Pages (from-to)748-756
Number of pages9
JournalJournal of Craniofacial Surgery
Volume19
Issue number3
DOIs
StatePublished - May 2008

Keywords

  • Biodegradable plates and screws
  • Poly L-lactic acid
  • Polyglycolic acid

ASJC Scopus subject areas

  • Surgery
  • Otorhinolaryngology

Fingerprint

Dive into the research topics of 'Biodegradation of Inion fast-absorbing biodegradable plates and screws'. Together they form a unique fingerprint.

Cite this