Blocking EphB1 receptor forward signaling in spinal cord relieves bone cancer pain and rescues analgesic effect of morphine treatment in rodents

Su Liu, Wen Tao Liu, Yue Peng Liu, Hai Long Dong, Mark Henkemeyer, Li Ze Xiong, Xue Jun Song

Research output: Contribution to journalArticlepeer-review

69 Scopus citations

Abstract

Treating bone cancer pain continues to be a clinical challenge and underlying mechanisms of bone cancer pain remain elusive. Here, we report that EphB1 receptor forward signaling in the spinal cord is critical to the development of bone cancer pain and morphine tolerance in treating bone cancer pain. Tibia bone cavity tumor cell implantation (TCI) produces bone cancer-related thermal hyperalgesia, mechanical allodynia, spontaneous and movement-evoked pain behaviors, and bone destruction. Production and persistence of these pain behaviors are well correlated with TCI-induced upregulation of EphB1 receptor and its ligand ephrinB2 in the dorsal horn and primary sensory neurons. Spinal administration of an EphB1 receptor blocking reagent EphB2-Fc prevents and reverses bone cancer pain behaviors and the associated induction of c-Fos and activation of astrocytes and microglial cells, NR1 and NR2B receptors, Src within the N-methyl-D-aspartate receptor complex, and the subsequent Ca 2+-dependent signals. The exogenous ligand ephrinB2-Fc upregulates level of phosphorylation of NR1 and NR2B receptors depending on the activation of EphB1 receptor. Spinal administration of EphB2-Fc and ephrinB2-Fc induces downregulation of EphB1 and ephrinB2, respectively, accompanied with increased activity of matrix metalloproteinase (MMP)-2/9. Blocking MMP-2 or MMP-9 reverses EphB1-Fc treatment-induced downregulation of EphB1 receptor. In addition, spinal blocking or targeted mutation of EphB1 receptor reverses morphine tolerance in treating bone cancer pain in rats and defensive pain in mice. These findings show a critical mechanism underlying the pathogenesis of bone cancer pain and suggest a potential target for treating bone cancer pain and improving analgesic effect of morphine clinically.

Original languageEnglish (US)
Pages (from-to)4392-4402
Number of pages11
JournalCancer research
Volume71
Issue number13
DOIs
StatePublished - Jul 1 2011

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'Blocking EphB1 receptor forward signaling in spinal cord relieves bone cancer pain and rescues analgesic effect of morphine treatment in rodents'. Together they form a unique fingerprint.

Cite this