Carboxylate switch between hydro- and carbopalladation pathways in regiodivergent dimerization of alkynes

Olga V. Zatolochnaya, Evgeniy G. Gordeev, Claire Jahier, Valentine P. Ananikov, Vladimir Gevorgyan

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

Experimental and theoretical investigation of the regiodivergent palladium-catalyzed dimerization of terminal alkynes is presented. Employment of N-heterocyclic carbene-based palladium catalyst in the presence of phosphine ligand allows for highly regio- and stereoselective head-to-head dimerization reaction. Alternatively, addition of carboxylate anion to the reaction mixture triggers selective head-to-tail coupling. Computational studies suggest that reaction proceeds via the hydropalladation pathway favoring head-to-head dimerization under neutral reaction conditions. The origin of the regioselectivity switch can be explained by the dual role of carboxylate anion. Thus, the removal of hydrogen atom by the carboxylate directs reaction from the hydropalladation to the carbopalladation pathway. Additionally, in the presence of the carboxylate anion intermediate, palladium complexes involved in the head-to-tail dimerization display higher stability compared to their analogues for the head-to-head reaction. Track changer: The regiodivergent palladium-catalyzed dimerization of terminal alkynes was studied. High regio- and stereoselectivity was achieved for both head-to-head and head-to-tail dimerization reactions. Computational studies suggest hydropalladation to favor head-to-head dimerization under neutral conditions. Addition of carboxylate anions switches the reaction from hydropalladation to carbopalladation pathway securing head-to-tail coupling (see scheme).

Original languageEnglish (US)
Pages (from-to)9578-9588
Number of pages11
JournalChemistry - A European Journal
Volume20
Issue number31
DOIs
StatePublished - Jul 28 2014
Externally publishedYes

Keywords

  • alkyne dimerization
  • carbopalladation
  • density functional calculations
  • hydropalladation
  • palladium

ASJC Scopus subject areas

  • Catalysis
  • Organic Chemistry

Fingerprint

Dive into the research topics of 'Carboxylate switch between hydro- and carbopalladation pathways in regiodivergent dimerization of alkynes'. Together they form a unique fingerprint.

Cite this