Cardiac systolic and diastolic function during whole body heat stress

R. Matthew Brothers, Paul S. Bhella, Shigeki Shibata, Jonathan E. Wingo, Benjamin D. Levine, Craig G. Crandall

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

During a whole body heat stress, stroke volume is either maintained or slightly elevated despite reduced ventricular filling pressures and central blood volume, suggestive of improved cardiac diastolic and/or systolic function. Heat stress improves cardiac systolic and diastolic function in patients with congestive heart failure, although it remains unknown whether similar responses occur in healthy individuals, which is the hypothesis to be tested. Nine male volunteers underwent a whole body heat stress. Echocardiographic indexes of diastolic and systolic function were performed following a supine resting period, and again following an increase in internal temperature of ∼1.0°C via passive heat stress. Despite previous reports of heat stress-induced decreases in ventricular filling pressures and central blood volume, no changes in indexes of diastolic function were identified during heating [i.e., unchanged early diastolic mitral annular tissue velocity (E'), mitral inflow during the early diastolic phase (E), the E/E' ratio, and isovolumetric relaxation time]. Heat stress increased late diastolic septal (P = 0.03) and lateral (P = 0.01) mitral annular tissue velocities (A'), mitral inflow velocity during atrial contraction (P > 0.001), and the relative contribution of atrial contraction to left ventricular filling during diastole (P = 0.01), all indicative of improved atrial systolic function. Furthermore, indexes of ventricular systolic function were increased by heat stress [i.e., increased septal (P = 0.001) and lateral (P = 0.01) mitral annular systolic velocities and isovolumic acceleration at the septal (P = 0.03) and lateral (P > 0.001) mitral annulus]. These data are suggestive of improved atrial and ventricular systolic function by the heat stress. Together these data support previous findings, which used the less precise measure of ejection fraction, that heat stress improves indexes of systolic

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume296
Issue number4
DOIs
StatePublished - Apr 2009

Fingerprint

Hot Temperature
Ventricular Function
Ventricular Pressure
Blood Volume
Atrial Function
Diastole
Stroke Volume
Heating
Volunteers
Heart Failure
Temperature

Keywords

  • Function
  • Stroke volume
  • While diastolic function is maintained.cardiac systolic function

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)
  • Cardiology and Cardiovascular Medicine

Cite this

Cardiac systolic and diastolic function during whole body heat stress. / Brothers, R. Matthew; Bhella, Paul S.; Shibata, Shigeki; Wingo, Jonathan E.; Levine, Benjamin D.; Crandall, Craig G.

In: American Journal of Physiology - Heart and Circulatory Physiology, Vol. 296, No. 4, 04.2009.

Research output: Contribution to journalArticle

@article{0c817437958c4115b2839129173a415a,
title = "Cardiac systolic and diastolic function during whole body heat stress",
abstract = "During a whole body heat stress, stroke volume is either maintained or slightly elevated despite reduced ventricular filling pressures and central blood volume, suggestive of improved cardiac diastolic and/or systolic function. Heat stress improves cardiac systolic and diastolic function in patients with congestive heart failure, although it remains unknown whether similar responses occur in healthy individuals, which is the hypothesis to be tested. Nine male volunteers underwent a whole body heat stress. Echocardiographic indexes of diastolic and systolic function were performed following a supine resting period, and again following an increase in internal temperature of ∼1.0°C via passive heat stress. Despite previous reports of heat stress-induced decreases in ventricular filling pressures and central blood volume, no changes in indexes of diastolic function were identified during heating [i.e., unchanged early diastolic mitral annular tissue velocity (E'), mitral inflow during the early diastolic phase (E), the E/E' ratio, and isovolumetric relaxation time]. Heat stress increased late diastolic septal (P = 0.03) and lateral (P = 0.01) mitral annular tissue velocities (A'), mitral inflow velocity during atrial contraction (P > 0.001), and the relative contribution of atrial contraction to left ventricular filling during diastole (P = 0.01), all indicative of improved atrial systolic function. Furthermore, indexes of ventricular systolic function were increased by heat stress [i.e., increased septal (P = 0.001) and lateral (P = 0.01) mitral annular systolic velocities and isovolumic acceleration at the septal (P = 0.03) and lateral (P > 0.001) mitral annulus]. These data are suggestive of improved atrial and ventricular systolic function by the heat stress. Together these data support previous findings, which used the less precise measure of ejection fraction, that heat stress improves indexes of systolic",
keywords = "Function, Stroke volume, While diastolic function is maintained.cardiac systolic function",
author = "Brothers, {R. Matthew} and Bhella, {Paul S.} and Shigeki Shibata and Wingo, {Jonathan E.} and Levine, {Benjamin D.} and Crandall, {Craig G.}",
year = "2009",
month = "4",
doi = "10.1152/ajpheart.01069.2008",
language = "English (US)",
volume = "296",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Cardiac systolic and diastolic function during whole body heat stress

AU - Brothers, R. Matthew

AU - Bhella, Paul S.

AU - Shibata, Shigeki

AU - Wingo, Jonathan E.

AU - Levine, Benjamin D.

AU - Crandall, Craig G.

PY - 2009/4

Y1 - 2009/4

N2 - During a whole body heat stress, stroke volume is either maintained or slightly elevated despite reduced ventricular filling pressures and central blood volume, suggestive of improved cardiac diastolic and/or systolic function. Heat stress improves cardiac systolic and diastolic function in patients with congestive heart failure, although it remains unknown whether similar responses occur in healthy individuals, which is the hypothesis to be tested. Nine male volunteers underwent a whole body heat stress. Echocardiographic indexes of diastolic and systolic function were performed following a supine resting period, and again following an increase in internal temperature of ∼1.0°C via passive heat stress. Despite previous reports of heat stress-induced decreases in ventricular filling pressures and central blood volume, no changes in indexes of diastolic function were identified during heating [i.e., unchanged early diastolic mitral annular tissue velocity (E'), mitral inflow during the early diastolic phase (E), the E/E' ratio, and isovolumetric relaxation time]. Heat stress increased late diastolic septal (P = 0.03) and lateral (P = 0.01) mitral annular tissue velocities (A'), mitral inflow velocity during atrial contraction (P > 0.001), and the relative contribution of atrial contraction to left ventricular filling during diastole (P = 0.01), all indicative of improved atrial systolic function. Furthermore, indexes of ventricular systolic function were increased by heat stress [i.e., increased septal (P = 0.001) and lateral (P = 0.01) mitral annular systolic velocities and isovolumic acceleration at the septal (P = 0.03) and lateral (P > 0.001) mitral annulus]. These data are suggestive of improved atrial and ventricular systolic function by the heat stress. Together these data support previous findings, which used the less precise measure of ejection fraction, that heat stress improves indexes of systolic

AB - During a whole body heat stress, stroke volume is either maintained or slightly elevated despite reduced ventricular filling pressures and central blood volume, suggestive of improved cardiac diastolic and/or systolic function. Heat stress improves cardiac systolic and diastolic function in patients with congestive heart failure, although it remains unknown whether similar responses occur in healthy individuals, which is the hypothesis to be tested. Nine male volunteers underwent a whole body heat stress. Echocardiographic indexes of diastolic and systolic function were performed following a supine resting period, and again following an increase in internal temperature of ∼1.0°C via passive heat stress. Despite previous reports of heat stress-induced decreases in ventricular filling pressures and central blood volume, no changes in indexes of diastolic function were identified during heating [i.e., unchanged early diastolic mitral annular tissue velocity (E'), mitral inflow during the early diastolic phase (E), the E/E' ratio, and isovolumetric relaxation time]. Heat stress increased late diastolic septal (P = 0.03) and lateral (P = 0.01) mitral annular tissue velocities (A'), mitral inflow velocity during atrial contraction (P > 0.001), and the relative contribution of atrial contraction to left ventricular filling during diastole (P = 0.01), all indicative of improved atrial systolic function. Furthermore, indexes of ventricular systolic function were increased by heat stress [i.e., increased septal (P = 0.001) and lateral (P = 0.01) mitral annular systolic velocities and isovolumic acceleration at the septal (P = 0.03) and lateral (P > 0.001) mitral annulus]. These data are suggestive of improved atrial and ventricular systolic function by the heat stress. Together these data support previous findings, which used the less precise measure of ejection fraction, that heat stress improves indexes of systolic

KW - Function

KW - Stroke volume

KW - While diastolic function is maintained.cardiac systolic function

UR - http://www.scopus.com/inward/record.url?scp=66249133396&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=66249133396&partnerID=8YFLogxK

U2 - 10.1152/ajpheart.01069.2008

DO - 10.1152/ajpheart.01069.2008

M3 - Article

VL - 296

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 4

ER -