Cardiopulmonary and arterial baroreceptor unloading during passive hyperthermia does not contribute to hyperthermia-induced hyperventilation

Rebekah A I Lucas, James Pearson, Zachary J. Schlader, Craig G. Crandall

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

This study tested the hypothesis that baroreceptor unloading during passive hyperthermia contributes to increases in ventilation and decreases in end-tidal partial pressure of carbon dioxide (P ET ,CO2) during that exposure. Two protocols were performed, in which healthy subjects underwent passive hyperthermia (increasing intestinal temperature by ∼1.8°C) to cause a sustained increase in ventilation and reduction in P ET ,CO2. Upon attaining hyperthermic hyperventilation, in protocol 1 (n = 10; three females) a bolus (19 ± 2 ml kg-1) of warm (∼38°C) isotonic saline was rapidly (5-10 min) infused intravenously to restore reductions in central venous pressure, whereas in protocol 2 (n = 11; five females) phenylephrine was infused intravenously (60-120 μg min-1) to return mean arterial pressure to normothermic levels. In protocol 1, hyperthermia increased ventilation (by 2.2 ± 1.7 l min-1, P < 0.01), while reducing P ET ,CO2 (by 4 ± 3 mmHg, P = 0.04) and central venous pressure (by 5 ± 1 mmHg, P <0.01). Saline infusion increased central venous pressure by 5 ± 1 mmHg (P < 0.01), restoring it to normothermic values, but did not change ventilation or P ET ,CO2 (P > 0.05). In protocol 2, hyperthermia increased ventilation (by 5.0 ± 2.7 l min-1, P <0.01) and reduced P ET ,CO2 (by 5 ± 2 mmHg, P < 0.01) and mean arterial pressure (by 9 ± 7 mmHg, P <0.01). Phenylephrine infusion increased mean arterial pressure by 12 ± 3 mmHg (P < 0.01), restoring it to normothermic values, but did not change ventilation or P ET ,CO2 (P > 0.05). The absence of a reduction in ventilation upon reloading the cardiopulmonary and arterial baroreceptors to pre-hyperthermic levels indicates that baroreceptor unloading with hyperthermia is unlikely to contribute to hyperthermic hyperventilation in humans.

Original languageEnglish (US)
Pages (from-to)1309-1318
Number of pages10
JournalExperimental Physiology
Volume100
Issue number11
DOIs
StatePublished - Nov 1 2015

ASJC Scopus subject areas

  • Physiology
  • Nutrition and Dietetics
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'Cardiopulmonary and arterial baroreceptor unloading during passive hyperthermia does not contribute to hyperthermia-induced hyperventilation'. Together they form a unique fingerprint.

Cite this