Causal inference in a clinical trial: A comparative example

Research output: Contribution to journalArticlepeer-review

27 Scopus citations


Recently there has been much interest in methods for analyzing clinical trials of treatments that are subject to noncompliance. In this paper I study a small, simple dataset from a clinical trial of immunosuppressive therapy in the treatment of multiple sclerosis. I apply and compare a range of methods: the as-randomized (intention-to-treat) analysis, the as-treated analysis, estimates based on a nonignorable selection model, and Rubin's causal model. The results differ substantially even in this small dataset that exhibits modest noncompliance. For this reason, data analysts should be clear about which parameters are of greatest importance in the analysis of a clinical trial. Control Clin Trials 1999;20:309-318 Copyright (C) 1999 Elsevier Science Inc.

Original languageEnglish (US)
Pages (from-to)309-318
Number of pages10
JournalControlled Clinical Trials
Issue number4
StatePublished - Aug 1999


  • Intention-to-treat analysis
  • Noncompliance
  • Nonignorable model

ASJC Scopus subject areas

  • Pharmacology


Dive into the research topics of 'Causal inference in a clinical trial: A comparative example'. Together they form a unique fingerprint.

Cite this