Cdk5 Contributes to Huntington’s Disease Learning and Memory Deficits via Modulation of Brain Region-Specific Substrates

Elena Alvarez-Periel, Mar Puigdellívol, Verónica Brito, Florian Plattner, James A. Bibb, Jordi Alberch, Silvia Ginés

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Cognitive deficits are a major hallmark of Huntington’s disease (HD) with a great impact on the quality of patient’s life. Gaining a better understanding of the molecular mechanisms underlying learning and memory impairments in HD is, therefore, of critical importance. Cdk5 is a proline-directed Ser/Thr kinase involved in the regulation of synaptic plasticity and memory processes that has been associated with several neurodegenerative disorders. In this study, we aim to investigate the role of Cdk5 in learning and memory impairments in HD using a novel animal model that expresses mutant huntingtin (mHtt) and has genetically reduced Cdk5 levels. Genetic reduction of Cdk5 in mHtt knock-in mice attenuated both corticostriatal learning deficits as well as hippocampal-dependent memory decline. Moreover, the molecular mechanisms by which Cdk5 counteracts the mHtt-induced learning and memory impairments appeared to be differentially regulated in a brain region-specific manner. While the corticostriatal learning deficits are attenuated through compensatory regulation of NR2B surface levels, the rescue of hippocampal-dependent memory was likely due to restoration of hippocampal dendritic spine density along with an increase in Rac1 activity. This work identifies Cdk5 as a critical contributor to mHtt-induced learning and memory deficits. Furthermore, we show that the Cdk5 downstream targets involved in memory and learning decline differ depending on the brain region analyzed suggesting that distinct Cdk5 effectors could be involved in cognitive impairments in HD.

Original languageEnglish (US)
Pages (from-to)6250-6268
Number of pages19
JournalMolecular Neurobiology
Volume55
Issue number8
DOIs
StatePublished - Aug 1 2018

Keywords

  • Cdk5
  • Cognition
  • Dendritic spines
  • Huntingtin
  • NR2B
  • Rac1

ASJC Scopus subject areas

  • Neurology
  • Cellular and Molecular Neuroscience

Fingerprint Dive into the research topics of 'Cdk5 Contributes to Huntington’s Disease Learning and Memory Deficits via Modulation of Brain Region-Specific Substrates'. Together they form a unique fingerprint.

Cite this