Cell membrane permeable esters of d-myo-inositol 1,4,5-trisphosphate

Kenneth Dakin, Wen Hong Li

Research output: Contribution to journalArticle

34 Citations (Scopus)

Abstract

d-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3, or IP3) is a ubiquitous second messenger that regulates cytosolic Ca2+ activities ([Ca2+]i). To study this signaling branch in intact cells, we have synthesized a caged and cell permeable derivative of IP3, ci-IP3/PM, from myo-inositol in 9 steps. Ci-IP3/PM is a homologue of cm-IP3/PM, a caged and cell permeable IP3 ester developed earlier. In ci-IP3/PM, 2- and 3-hydroxyl groups of myo-inositiol are protected by an isopropylidene group; whereas in cm-IP3/PM, a methoxymethylene is used. Ci-IP3/PM can be loaded into cells non-invasively to high concentrations without activating IP3 receptors (IP3Rs). UV uncaging of loaded ci-IP3 released i-IP3, a potent agonist of IP3Rs, and evoked Ca2+ release from internal stores. Interestingly, elevations of [Ca2+]i by i-IP3 lasted longer than [Ca2+]i transients by m-IP3, the uncaging product of cm-IP3. To understand this difference, we measured the metabolic stability of i-IP3 and m-IP3. Like natural IP3 which is known to be rapidly metabolized in cells, m-IP3 could only be detected within several seconds after uncaging cm-IP3. In contrast, i-IP3 was metabolized at a much slower rate. By exploiting different metabolic rates of m-IP3 and i-IP3, we developed two procedures for activating IP3Rs in cells without UV uncaging. The first method involves photolyzing ci-IP3/PM in vitro to generate i-IP3/PM. Successive additions of low micromolar i-IP3/PM to NIH 3T3 cells caused graded Ca2+ releases, confirming that "quantal Ca2+ release" occurs in fully intact cells with normal ATP supplies and undisrupted endoplasmic reticulum. The second technique utilizes two photon uncaging. After locally illuminating cells loaded with cm-IP3 with femtosecond-pulsed near-infrared light (730 nm), we observed a burst of Ca2+ activity in the uncaging area. This local Ca2+ rise rapidly propagated across cells and could be repeated many times in different sub-cellular locations to produce artificial Ca2+ oscillations of defined amplitudes and frequencies. The complementary advantages of these IP3 prodrugs should provide new approaches for studying IP3-Ca2+ signaling in intact cell populations with high spatiotemporal resolutions.

Original languageEnglish (US)
Pages (from-to)291-301
Number of pages11
JournalCell Calcium
Volume42
Issue number3
DOIs
StatePublished - Sep 2007

Fingerprint

Inositol 1,4,5-Trisphosphate
Esters
Cell Membrane
Inositol 1,4,5-Trisphosphate Receptors
NIH 3T3 Cells
Prodrugs
Second Messenger Systems
Inositol
Photons
Endoplasmic Reticulum
Hydroxyl Radical
Adenosine Triphosphate
Light

Keywords

  • Calcium signaling
  • Cell permeable ester of IP3
  • ci-IP3/PM
  • cm-IP3/PM
  • i-IP3/PM
  • IP3
  • IP3/PM
  • m-IP3/PM
  • Prodrug design
  • Quantal calcium release
  • Second messenger
  • Two photon uncaging

ASJC Scopus subject areas

  • Cell Biology
  • Endocrinology

Cite this

Cell membrane permeable esters of d-myo-inositol 1,4,5-trisphosphate. / Dakin, Kenneth; Li, Wen Hong.

In: Cell Calcium, Vol. 42, No. 3, 09.2007, p. 291-301.

Research output: Contribution to journalArticle

@article{c08397803e2a49e79ead39c2d9bd32e3,
title = "Cell membrane permeable esters of d-myo-inositol 1,4,5-trisphosphate",
abstract = "d-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3, or IP3) is a ubiquitous second messenger that regulates cytosolic Ca2+ activities ([Ca2+]i). To study this signaling branch in intact cells, we have synthesized a caged and cell permeable derivative of IP3, ci-IP3/PM, from myo-inositol in 9 steps. Ci-IP3/PM is a homologue of cm-IP3/PM, a caged and cell permeable IP3 ester developed earlier. In ci-IP3/PM, 2- and 3-hydroxyl groups of myo-inositiol are protected by an isopropylidene group; whereas in cm-IP3/PM, a methoxymethylene is used. Ci-IP3/PM can be loaded into cells non-invasively to high concentrations without activating IP3 receptors (IP3Rs). UV uncaging of loaded ci-IP3 released i-IP3, a potent agonist of IP3Rs, and evoked Ca2+ release from internal stores. Interestingly, elevations of [Ca2+]i by i-IP3 lasted longer than [Ca2+]i transients by m-IP3, the uncaging product of cm-IP3. To understand this difference, we measured the metabolic stability of i-IP3 and m-IP3. Like natural IP3 which is known to be rapidly metabolized in cells, m-IP3 could only be detected within several seconds after uncaging cm-IP3. In contrast, i-IP3 was metabolized at a much slower rate. By exploiting different metabolic rates of m-IP3 and i-IP3, we developed two procedures for activating IP3Rs in cells without UV uncaging. The first method involves photolyzing ci-IP3/PM in vitro to generate i-IP3/PM. Successive additions of low micromolar i-IP3/PM to NIH 3T3 cells caused graded Ca2+ releases, confirming that {"}quantal Ca2+ release{"} occurs in fully intact cells with normal ATP supplies and undisrupted endoplasmic reticulum. The second technique utilizes two photon uncaging. After locally illuminating cells loaded with cm-IP3 with femtosecond-pulsed near-infrared light (730 nm), we observed a burst of Ca2+ activity in the uncaging area. This local Ca2+ rise rapidly propagated across cells and could be repeated many times in different sub-cellular locations to produce artificial Ca2+ oscillations of defined amplitudes and frequencies. The complementary advantages of these IP3 prodrugs should provide new approaches for studying IP3-Ca2+ signaling in intact cell populations with high spatiotemporal resolutions.",
keywords = "Calcium signaling, Cell permeable ester of IP3, ci-IP3/PM, cm-IP3/PM, i-IP3/PM, IP3, IP3/PM, m-IP3/PM, Prodrug design, Quantal calcium release, Second messenger, Two photon uncaging",
author = "Kenneth Dakin and Li, {Wen Hong}",
year = "2007",
month = "9",
doi = "10.1016/j.ceca.2006.12.003",
language = "English (US)",
volume = "42",
pages = "291--301",
journal = "Cell Calcium",
issn = "0143-4160",
publisher = "Churchill Livingstone",
number = "3",

}

TY - JOUR

T1 - Cell membrane permeable esters of d-myo-inositol 1,4,5-trisphosphate

AU - Dakin, Kenneth

AU - Li, Wen Hong

PY - 2007/9

Y1 - 2007/9

N2 - d-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3, or IP3) is a ubiquitous second messenger that regulates cytosolic Ca2+ activities ([Ca2+]i). To study this signaling branch in intact cells, we have synthesized a caged and cell permeable derivative of IP3, ci-IP3/PM, from myo-inositol in 9 steps. Ci-IP3/PM is a homologue of cm-IP3/PM, a caged and cell permeable IP3 ester developed earlier. In ci-IP3/PM, 2- and 3-hydroxyl groups of myo-inositiol are protected by an isopropylidene group; whereas in cm-IP3/PM, a methoxymethylene is used. Ci-IP3/PM can be loaded into cells non-invasively to high concentrations without activating IP3 receptors (IP3Rs). UV uncaging of loaded ci-IP3 released i-IP3, a potent agonist of IP3Rs, and evoked Ca2+ release from internal stores. Interestingly, elevations of [Ca2+]i by i-IP3 lasted longer than [Ca2+]i transients by m-IP3, the uncaging product of cm-IP3. To understand this difference, we measured the metabolic stability of i-IP3 and m-IP3. Like natural IP3 which is known to be rapidly metabolized in cells, m-IP3 could only be detected within several seconds after uncaging cm-IP3. In contrast, i-IP3 was metabolized at a much slower rate. By exploiting different metabolic rates of m-IP3 and i-IP3, we developed two procedures for activating IP3Rs in cells without UV uncaging. The first method involves photolyzing ci-IP3/PM in vitro to generate i-IP3/PM. Successive additions of low micromolar i-IP3/PM to NIH 3T3 cells caused graded Ca2+ releases, confirming that "quantal Ca2+ release" occurs in fully intact cells with normal ATP supplies and undisrupted endoplasmic reticulum. The second technique utilizes two photon uncaging. After locally illuminating cells loaded with cm-IP3 with femtosecond-pulsed near-infrared light (730 nm), we observed a burst of Ca2+ activity in the uncaging area. This local Ca2+ rise rapidly propagated across cells and could be repeated many times in different sub-cellular locations to produce artificial Ca2+ oscillations of defined amplitudes and frequencies. The complementary advantages of these IP3 prodrugs should provide new approaches for studying IP3-Ca2+ signaling in intact cell populations with high spatiotemporal resolutions.

AB - d-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3, or IP3) is a ubiquitous second messenger that regulates cytosolic Ca2+ activities ([Ca2+]i). To study this signaling branch in intact cells, we have synthesized a caged and cell permeable derivative of IP3, ci-IP3/PM, from myo-inositol in 9 steps. Ci-IP3/PM is a homologue of cm-IP3/PM, a caged and cell permeable IP3 ester developed earlier. In ci-IP3/PM, 2- and 3-hydroxyl groups of myo-inositiol are protected by an isopropylidene group; whereas in cm-IP3/PM, a methoxymethylene is used. Ci-IP3/PM can be loaded into cells non-invasively to high concentrations without activating IP3 receptors (IP3Rs). UV uncaging of loaded ci-IP3 released i-IP3, a potent agonist of IP3Rs, and evoked Ca2+ release from internal stores. Interestingly, elevations of [Ca2+]i by i-IP3 lasted longer than [Ca2+]i transients by m-IP3, the uncaging product of cm-IP3. To understand this difference, we measured the metabolic stability of i-IP3 and m-IP3. Like natural IP3 which is known to be rapidly metabolized in cells, m-IP3 could only be detected within several seconds after uncaging cm-IP3. In contrast, i-IP3 was metabolized at a much slower rate. By exploiting different metabolic rates of m-IP3 and i-IP3, we developed two procedures for activating IP3Rs in cells without UV uncaging. The first method involves photolyzing ci-IP3/PM in vitro to generate i-IP3/PM. Successive additions of low micromolar i-IP3/PM to NIH 3T3 cells caused graded Ca2+ releases, confirming that "quantal Ca2+ release" occurs in fully intact cells with normal ATP supplies and undisrupted endoplasmic reticulum. The second technique utilizes two photon uncaging. After locally illuminating cells loaded with cm-IP3 with femtosecond-pulsed near-infrared light (730 nm), we observed a burst of Ca2+ activity in the uncaging area. This local Ca2+ rise rapidly propagated across cells and could be repeated many times in different sub-cellular locations to produce artificial Ca2+ oscillations of defined amplitudes and frequencies. The complementary advantages of these IP3 prodrugs should provide new approaches for studying IP3-Ca2+ signaling in intact cell populations with high spatiotemporal resolutions.

KW - Calcium signaling

KW - Cell permeable ester of IP3

KW - ci-IP3/PM

KW - cm-IP3/PM

KW - i-IP3/PM

KW - IP3

KW - IP3/PM

KW - m-IP3/PM

KW - Prodrug design

KW - Quantal calcium release

KW - Second messenger

KW - Two photon uncaging

UR - http://www.scopus.com/inward/record.url?scp=34447560168&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34447560168&partnerID=8YFLogxK

U2 - 10.1016/j.ceca.2006.12.003

DO - 10.1016/j.ceca.2006.12.003

M3 - Article

C2 - 17307252

AN - SCOPUS:34447560168

VL - 42

SP - 291

EP - 301

JO - Cell Calcium

JF - Cell Calcium

SN - 0143-4160

IS - 3

ER -