Cervical remodeling during pregnancy and parturition: Molecular characterization of the softening phase in mice

Charles P. Read, R. Ann Word, Monika A. Ruscheinsky, Brenda C. Timmons, Mala S. Mahendroo

Research output: Contribution to journalArticle

127 Scopus citations

Abstract

Cervical remodeling during pregnancy and parturition is a single progressive process that can be loosely divided into four overlapping phases termed softening, ripening, dilation/labor, and post partum repair. Elucidating the molecular mechanisms that facilitate all phases of cervical remodeling is critical for an understanding of parturition and for identifying processes that are misregulated in preterm labor, a significant cause of perinatal morbidity. In the present study, biomechanical measurements indicate that softening was initiated between gestation days 10 and 12 of mouse pregnancy, and in contrast to cervical ripening on day 18, the softened cervix maintains tissue strength. Although preceded by increased collagen solubility, cervical softening is not characterized by significant increases in cell proliferation, tissue hydration or changes in the distribution of inflammatory cells. Gene expression studies reveal a potentially important role of cervical epithelia during softening and ripening in maintenance of an immunomucosal barrier that protects the stromal compartment during matrix remodeling. Expression of two genes involved in repair and protection of the epithelial permeability barrier in the gut (trefoil factor 1) and skin (serine protease inhibitor Kazal type 5) were increased during softening and/or ripening. Another gene whose function remains to be elucidated, purkinje cell protein 4, declines in expression as remodeling progressed. Collectively, these results indicate that cervical softening during pregnancy is a unique phase of the tissue remodeling process characterized by increased collagen solubility, maintenance of tissue strength, and upregulation of genes involved in mucosal protection.

Original languageEnglish (US)
Pages (from-to)327-340
Number of pages14
JournalReproduction
Volume134
Issue number2
DOIs
Publication statusPublished - Aug 2007

    Fingerprint

ASJC Scopus subject areas

  • Obstetrics and Gynecology
  • Cell Biology
  • Endocrinology
  • Embryology

Cite this