Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer

Elizabeth A. McMillan, Myung Jeom Ryu, Caroline H. Diep, Saurabh Mendiratta, Jean R. Clemenceau, Rachel M. Vaden, Ju Hwa Kim, Takashi Motoyaji, Kyle R. Covington, Michael Peyton, Kenneth Huffman, Xiaofeng Wu, Luc Girard, Yeojin Sung, Pei Hsaun Chen, Prema L. Mallipeddi, Joo Young Lee, Jordan Hanson, Sukesh Voruganti, Yunku YuSunho Park, Jessica Sudderth, Christopher DeSevo, Donna M. Muzny, Harsha Vardhan Doddapaneni, Adi Gazdar, Richard A. Gibbs, Tae Hyun Hwang, John V. Heymach, Ignacio Wistuba, Kevin R. Coombes, Noelle S. Williams, David A. Wheeler, John B. MacMillan, Ralph J. Deberardinis, Michael G. Roth, Bruce A. Posner, John D. Minna, Hyun Seok Kim, Michael A. White

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer. Application of a chemistry-first approach matches chemicals with targetable, diverse genetic lesions and cancer-promoting mechanisms in human lung cancer, providing guidance for development of personalized cancer treatment.

Original languageEnglish (US)
Pages (from-to)864-878.e29
JournalCell
Volume173
Issue number4
DOIs
StatePublished - May 3 2018

Fingerprint

Lung Neoplasms
Neoplasms
Oncology
Biosynthesis
Small Molecule Libraries
Serine
Therapeutics
Patient Selection
Pharmaceutical Preparations
Population

Keywords

  • cancer target identification
  • chemical biology
  • ciliogenesis
  • glucocorticoid therapies
  • KRAS mutant
  • lung cancer
  • NRF2 signaling
  • serine biosynthesis

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)

Cite this

McMillan, E. A., Ryu, M. J., Diep, C. H., Mendiratta, S., Clemenceau, J. R., Vaden, R. M., ... White, M. A. (2018). Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer. Cell, 173(4), 864-878.e29. https://doi.org/10.1016/j.cell.2018.03.028

Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer. / McMillan, Elizabeth A.; Ryu, Myung Jeom; Diep, Caroline H.; Mendiratta, Saurabh; Clemenceau, Jean R.; Vaden, Rachel M.; Kim, Ju Hwa; Motoyaji, Takashi; Covington, Kyle R.; Peyton, Michael; Huffman, Kenneth; Wu, Xiaofeng; Girard, Luc; Sung, Yeojin; Chen, Pei Hsaun; Mallipeddi, Prema L.; Lee, Joo Young; Hanson, Jordan; Voruganti, Sukesh; Yu, Yunku; Park, Sunho; Sudderth, Jessica; DeSevo, Christopher; Muzny, Donna M.; Doddapaneni, Harsha Vardhan; Gazdar, Adi; Gibbs, Richard A.; Hwang, Tae Hyun; Heymach, John V.; Wistuba, Ignacio; Coombes, Kevin R.; Williams, Noelle S.; Wheeler, David A.; MacMillan, John B.; Deberardinis, Ralph J.; Roth, Michael G.; Posner, Bruce A.; Minna, John D.; Kim, Hyun Seok; White, Michael A.

In: Cell, Vol. 173, No. 4, 03.05.2018, p. 864-878.e29.

Research output: Contribution to journalArticle

McMillan, EA, Ryu, MJ, Diep, CH, Mendiratta, S, Clemenceau, JR, Vaden, RM, Kim, JH, Motoyaji, T, Covington, KR, Peyton, M, Huffman, K, Wu, X, Girard, L, Sung, Y, Chen, PH, Mallipeddi, PL, Lee, JY, Hanson, J, Voruganti, S, Yu, Y, Park, S, Sudderth, J, DeSevo, C, Muzny, DM, Doddapaneni, HV, Gazdar, A, Gibbs, RA, Hwang, TH, Heymach, JV, Wistuba, I, Coombes, KR, Williams, NS, Wheeler, DA, MacMillan, JB, Deberardinis, RJ, Roth, MG, Posner, BA, Minna, JD, Kim, HS & White, MA 2018, 'Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer', Cell, vol. 173, no. 4, pp. 864-878.e29. https://doi.org/10.1016/j.cell.2018.03.028
McMillan EA, Ryu MJ, Diep CH, Mendiratta S, Clemenceau JR, Vaden RM et al. Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer. Cell. 2018 May 3;173(4):864-878.e29. https://doi.org/10.1016/j.cell.2018.03.028
McMillan, Elizabeth A. ; Ryu, Myung Jeom ; Diep, Caroline H. ; Mendiratta, Saurabh ; Clemenceau, Jean R. ; Vaden, Rachel M. ; Kim, Ju Hwa ; Motoyaji, Takashi ; Covington, Kyle R. ; Peyton, Michael ; Huffman, Kenneth ; Wu, Xiaofeng ; Girard, Luc ; Sung, Yeojin ; Chen, Pei Hsaun ; Mallipeddi, Prema L. ; Lee, Joo Young ; Hanson, Jordan ; Voruganti, Sukesh ; Yu, Yunku ; Park, Sunho ; Sudderth, Jessica ; DeSevo, Christopher ; Muzny, Donna M. ; Doddapaneni, Harsha Vardhan ; Gazdar, Adi ; Gibbs, Richard A. ; Hwang, Tae Hyun ; Heymach, John V. ; Wistuba, Ignacio ; Coombes, Kevin R. ; Williams, Noelle S. ; Wheeler, David A. ; MacMillan, John B. ; Deberardinis, Ralph J. ; Roth, Michael G. ; Posner, Bruce A. ; Minna, John D. ; Kim, Hyun Seok ; White, Michael A. / Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer. In: Cell. 2018 ; Vol. 173, No. 4. pp. 864-878.e29.
@article{5f3f8e1e123e4d4b93406ea5b7464149,
title = "Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer",
abstract = "Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer. Application of a chemistry-first approach matches chemicals with targetable, diverse genetic lesions and cancer-promoting mechanisms in human lung cancer, providing guidance for development of personalized cancer treatment.",
keywords = "cancer target identification, chemical biology, ciliogenesis, glucocorticoid therapies, KRAS mutant, lung cancer, NRF2 signaling, serine biosynthesis",
author = "McMillan, {Elizabeth A.} and Ryu, {Myung Jeom} and Diep, {Caroline H.} and Saurabh Mendiratta and Clemenceau, {Jean R.} and Vaden, {Rachel M.} and Kim, {Ju Hwa} and Takashi Motoyaji and Covington, {Kyle R.} and Michael Peyton and Kenneth Huffman and Xiaofeng Wu and Luc Girard and Yeojin Sung and Chen, {Pei Hsaun} and Mallipeddi, {Prema L.} and Lee, {Joo Young} and Jordan Hanson and Sukesh Voruganti and Yunku Yu and Sunho Park and Jessica Sudderth and Christopher DeSevo and Muzny, {Donna M.} and Doddapaneni, {Harsha Vardhan} and Adi Gazdar and Gibbs, {Richard A.} and Hwang, {Tae Hyun} and Heymach, {John V.} and Ignacio Wistuba and Coombes, {Kevin R.} and Williams, {Noelle S.} and Wheeler, {David A.} and MacMillan, {John B.} and Deberardinis, {Ralph J.} and Roth, {Michael G.} and Posner, {Bruce A.} and Minna, {John D.} and Kim, {Hyun Seok} and White, {Michael A.}",
year = "2018",
month = "5",
day = "3",
doi = "10.1016/j.cell.2018.03.028",
language = "English (US)",
volume = "173",
pages = "864--878.e29",
journal = "Cell",
issn = "0092-8674",
publisher = "Cell Press",
number = "4",

}

TY - JOUR

T1 - Chemistry-First Approach for Nomination of Personalized Treatment in Lung Cancer

AU - McMillan, Elizabeth A.

AU - Ryu, Myung Jeom

AU - Diep, Caroline H.

AU - Mendiratta, Saurabh

AU - Clemenceau, Jean R.

AU - Vaden, Rachel M.

AU - Kim, Ju Hwa

AU - Motoyaji, Takashi

AU - Covington, Kyle R.

AU - Peyton, Michael

AU - Huffman, Kenneth

AU - Wu, Xiaofeng

AU - Girard, Luc

AU - Sung, Yeojin

AU - Chen, Pei Hsaun

AU - Mallipeddi, Prema L.

AU - Lee, Joo Young

AU - Hanson, Jordan

AU - Voruganti, Sukesh

AU - Yu, Yunku

AU - Park, Sunho

AU - Sudderth, Jessica

AU - DeSevo, Christopher

AU - Muzny, Donna M.

AU - Doddapaneni, Harsha Vardhan

AU - Gazdar, Adi

AU - Gibbs, Richard A.

AU - Hwang, Tae Hyun

AU - Heymach, John V.

AU - Wistuba, Ignacio

AU - Coombes, Kevin R.

AU - Williams, Noelle S.

AU - Wheeler, David A.

AU - MacMillan, John B.

AU - Deberardinis, Ralph J.

AU - Roth, Michael G.

AU - Posner, Bruce A.

AU - Minna, John D.

AU - Kim, Hyun Seok

AU - White, Michael A.

PY - 2018/5/3

Y1 - 2018/5/3

N2 - Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer. Application of a chemistry-first approach matches chemicals with targetable, diverse genetic lesions and cancer-promoting mechanisms in human lung cancer, providing guidance for development of personalized cancer treatment.

AB - Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer. Application of a chemistry-first approach matches chemicals with targetable, diverse genetic lesions and cancer-promoting mechanisms in human lung cancer, providing guidance for development of personalized cancer treatment.

KW - cancer target identification

KW - chemical biology

KW - ciliogenesis

KW - glucocorticoid therapies

KW - KRAS mutant

KW - lung cancer

KW - NRF2 signaling

KW - serine biosynthesis

UR - http://www.scopus.com/inward/record.url?scp=85045335809&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85045335809&partnerID=8YFLogxK

U2 - 10.1016/j.cell.2018.03.028

DO - 10.1016/j.cell.2018.03.028

M3 - Article

C2 - 29681454

AN - SCOPUS:85045335809

VL - 173

SP - 864-878.e29

JO - Cell

JF - Cell

SN - 0092-8674

IS - 4

ER -