Abstract
The mechanism for nuclear envelope (NE) assembly is not fully understood. Importin-β and the small GTPase Ran have been implicated in the spatial regulation of NE assembly process. Here we report that chromatin-bound NLS (nuclear localization sequence) proteins provide docking sites for the NE precursor membrane vesicles and nucleoporins via importin-α and -β during NE assembly in Xenopus egg extracts. We show that along with the fast recruitment of the abundant NLS proteins such as nucleoplasmin and histones to the demembranated sperm chromatin in the extracts, importin-α binds the chromatin NLS proteins rapidly. Meanwhile, importin-β binds cytoplasmic NE precursor membrane vesicles and nucleoporins. Through interacting with importin-α on the chromatin NLS proteins, importin-β targets the membrane vesicles and nucleoporins to the chromatin surface. Once encountering Ran-GTP on the chromatin generated by RCC1, importin-β preferentially binds Ran-GTP and releases the membrane vesicles and nucleoporins for NE assembly. NE assembly is disrupted by blocking the interaction between importin-α and NLS proteins with excess soluble NLS proteins or by depletion of importin-β from the extract. Our findings reveal a novel molecular mechanism for NE assembly in Xenopus egg extracts.
Original language | English (US) |
---|---|
Pages (from-to) | 1562-1575 |
Number of pages | 14 |
Journal | Cell Research |
Volume | 22 |
Issue number | 11 |
DOIs | |
State | Published - Nov 1 2012 |
Fingerprint
ASJC Scopus subject areas
- Molecular Biology
- Cell Biology
Cite this
Chromatin-bound NLS proteins recruit membrane vesicles and nucleoporins for nuclear envelope assembly via importin-α/β. / Lu, Quanlong; Lu, Zhigang; Liu, Qinying; Guo, Li; Ren, He; Fu, Jingyan; Jiang, Qing; Clarke, Paul R.; Zhang, Chuanmao.
In: Cell Research, Vol. 22, No. 11, 01.11.2012, p. 1562-1575.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Chromatin-bound NLS proteins recruit membrane vesicles and nucleoporins for nuclear envelope assembly via importin-α/β
AU - Lu, Quanlong
AU - Lu, Zhigang
AU - Liu, Qinying
AU - Guo, Li
AU - Ren, He
AU - Fu, Jingyan
AU - Jiang, Qing
AU - Clarke, Paul R.
AU - Zhang, Chuanmao
PY - 2012/11/1
Y1 - 2012/11/1
N2 - The mechanism for nuclear envelope (NE) assembly is not fully understood. Importin-β and the small GTPase Ran have been implicated in the spatial regulation of NE assembly process. Here we report that chromatin-bound NLS (nuclear localization sequence) proteins provide docking sites for the NE precursor membrane vesicles and nucleoporins via importin-α and -β during NE assembly in Xenopus egg extracts. We show that along with the fast recruitment of the abundant NLS proteins such as nucleoplasmin and histones to the demembranated sperm chromatin in the extracts, importin-α binds the chromatin NLS proteins rapidly. Meanwhile, importin-β binds cytoplasmic NE precursor membrane vesicles and nucleoporins. Through interacting with importin-α on the chromatin NLS proteins, importin-β targets the membrane vesicles and nucleoporins to the chromatin surface. Once encountering Ran-GTP on the chromatin generated by RCC1, importin-β preferentially binds Ran-GTP and releases the membrane vesicles and nucleoporins for NE assembly. NE assembly is disrupted by blocking the interaction between importin-α and NLS proteins with excess soluble NLS proteins or by depletion of importin-β from the extract. Our findings reveal a novel molecular mechanism for NE assembly in Xenopus egg extracts.
AB - The mechanism for nuclear envelope (NE) assembly is not fully understood. Importin-β and the small GTPase Ran have been implicated in the spatial regulation of NE assembly process. Here we report that chromatin-bound NLS (nuclear localization sequence) proteins provide docking sites for the NE precursor membrane vesicles and nucleoporins via importin-α and -β during NE assembly in Xenopus egg extracts. We show that along with the fast recruitment of the abundant NLS proteins such as nucleoplasmin and histones to the demembranated sperm chromatin in the extracts, importin-α binds the chromatin NLS proteins rapidly. Meanwhile, importin-β binds cytoplasmic NE precursor membrane vesicles and nucleoporins. Through interacting with importin-α on the chromatin NLS proteins, importin-β targets the membrane vesicles and nucleoporins to the chromatin surface. Once encountering Ran-GTP on the chromatin generated by RCC1, importin-β preferentially binds Ran-GTP and releases the membrane vesicles and nucleoporins for NE assembly. NE assembly is disrupted by blocking the interaction between importin-α and NLS proteins with excess soluble NLS proteins or by depletion of importin-β from the extract. Our findings reveal a novel molecular mechanism for NE assembly in Xenopus egg extracts.
UR - http://www.scopus.com/inward/record.url?scp=84868527724&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84868527724&partnerID=8YFLogxK
U2 - 10.1038/cr.2012.113
DO - 10.1038/cr.2012.113
M3 - Article
C2 - 22847741
AN - SCOPUS:84868527724
VL - 22
SP - 1562
EP - 1575
JO - Cell Research
JF - Cell Research
SN - 1001-0602
IS - 11
ER -