Combined targeting of estrogen receptor alpha and XPO1 prevent AKT activation, remodel metabolic pathways and induce autophagy to overcome tamoxifen resistance

Eylem Kulkoyluoglu-Cotul, Brandi Patrice Smith, Kinga Wrobel, Yiru Chen Zhao, Karen Lee Ann Chen, Kadriye Hieronymi, Ozan Berk Imir, Kevin Duong, Caitlin O’Callaghan, Aditi Mehta, Sunati Sahoo, Barbara Haley, Hua Chang, Yosef Landesman, Zeynep Madak-Erdogan

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

A majority of breast cancer specific deaths in women with ERα (+) tumors occur due to metastases that are resistant to endocrine therapy. There is a critical need for novel therapeutic approaches to resensitize recurrent ERα (+) tumors to endocrine therapies. The objective of this study was to elucidate mechanisms of improved effectiveness of combined targeting of ERα and the nuclear transport protein XPO1 in overcoming endocrine resistance. Selinexor (SEL), an XPO1 antagonist, has been evaluated in multiple late stage clinical trials in patients with relapsed and /or refractory hematological and solid tumor malignancies. Our transcriptomics analysis showed that 4-Hydroxytamoxifen (4-OHT), SEL alone or their combination induced differential Akt signalingand metabolism-associated gene expression profiles. Western blot analysis in endocrine resistant cell lines and xenograft models validated differential Akt phosphorylation. Using the Seahorse metabolic profiler, we showed that ERα-XPO1 targeting changed the metabolic phenotype of TAMresistant breast cancer cells from an energetic to a quiescent profile. This finding demonstrated that combined targeting of XPO1 and ERα rewired the metabolic pathways and shut down both glycolytic and mitochondrial pathways that would eventually lead to autophagy. Remodeling metabolic pathways to regenerate new vulnerabilities in endocrine resistant breast tumors is novel, and given the need for better strategies to improve therapy response in relapsed ERα (+) tumors, our findings show great promise for uncovering the role that ERα-XPO1 crosstalk plays in reducing cancer recurrences.

Original languageEnglish (US)
Article number479
JournalCancers
Volume11
Issue number4
DOIs
StatePublished - Apr 2019

Keywords

  • Breast cancer
  • ERα
  • Endocrine resistance
  • Metabolic Rewiring
  • Nuclear transport pathways
  • XPO1

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Combined targeting of estrogen receptor alpha and XPO1 prevent AKT activation, remodel metabolic pathways and induce autophagy to overcome tamoxifen resistance'. Together they form a unique fingerprint.

Cite this