Combining Many-objective Radiomics and 3-dimensional Convolutional Neural Network through Evidential Reasoning to Predict Lymph Node Metastasis in Head and Neck Cancer

Liyuan Chen, Zhiguo Zhou, David Sher, Qiongwen Zhang, Jennifer L Shah, Nhat-Long Lam Pham, Steve Jiang, Jing Wang

Research output: Contribution to journalArticlepeer-review

Abstract

Lymph node metastasis (LNM) is a significant prognostic factor in patients with head and neck cancer, and the ability to predict it accurately is essential to optimizing treatment. Positron emission tomography (PET) and computed tomography (CT) imaging are routinely used to identify LNM. Although large or highly active lymph nodes (LNs) have a high probability of being positive, identifying small or less reactive LNs is challenging. The accuracy of LNM identification strongly depends on the physician’s experience, so an automatic prediction model for LNM based on CT and PET images is warranted to assist LMN identification across care providers and facilities. Radiomics and deep learning are the two promising imaging-based strategies for node malignancy prediction. Radiomics models are built based on handcrafted features, while deep learning learns the features automatically. To build a more reliable model, we proposed a hybrid predictive model that takes advantages of both radiomics and deep learning based strategies. We designed a new many-objective radiomics (MO-radiomics) model and a 3-dimensional convolutional neural network (3D-CNN) that fully utilizes spatial contextual information, and we fused their outputs through an evidential reasoning (ER) approach. We evaluated the performance of the hybrid method for classifying normal, suspicious and involved

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Sep 5 2018

Keywords

  • Convolutional neural network
  • Evidential reasoning
  • Head & Neck Cancer
  • Lymph node metastasis
  • Radiomics

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Combining Many-objective Radiomics and 3-dimensional Convolutional Neural Network through Evidential Reasoning to Predict Lymph Node Metastasis in Head and Neck Cancer'. Together they form a unique fingerprint.

Cite this