Comparative Transcriptomic and Lipidomic Analyses of Human Male and Female Meibomian Glands Reveal Common Signature Genes of Meibogenesis

Igor Butovich, Nita Bhat, Jadwiga C. Wojtowicz

Research output: Contribution to journalArticle

Abstract

Meibum is a lipid secretion that is produced by holocrine Meibomian glands (MGs). MGs are a specialized type of sebaceous glands that are embedded in the human eyelids. Chemically, meibum and sebum are different. A detailed characterization of lipidome and transcriptome of MG is required to deconvolute a complex and poorly characterized array of biosynthetic reactions (termed meibogenesis) that lead to formation of meibum. Changes in the composition and quality of meibum have been linked to various ocular disorders, some of which are more prevalent in males, while others in females. To establish the role of gender in meibogenesis in humans, we characterized MG transcriptomes and lipidomes of females and males, and identified signature genes of meibogenesis in both genders. Specimens of MG tissues were subjected to mRNA microarray analyses. Chemical composition of meibum samples was assessed chromatographically and mass spectrometrically. Both targeted and untargeted approaches were used. About 290 signature genes of meibogenesis were identified. The analyses of their expression patterns demonstrated no major differences between the genders. Lipid profiling of major classes of meibomian lipids, such as wax esters, cholesteryl esters, free cholesterol, (O)-acylated omega-hydroxy fatty acids (OAHFA), cholesteryl esters of OAHFA, and triacylglycerols, also demonstrated only minor (and random) differences in these lipids. The results of transcriptomic analyses correlated well with lipidomic data. Taken together, our data imply that in males and females, meibogenesis proceeds in a similar fashion, yielding secretions with similar, highly conserved, compositions. This finding is important for designing novel, gender-independent diagnostic and therapeutic approaches to various MG-related diseases and pathological conditions.

Original languageEnglish (US)
JournalInternational journal of molecular sciences
Volume20
Issue number18
DOIs
StatePublished - Sep 13 2019

Fingerprint

Meibomian Glands
glands
genes
Lipids
Genes
signatures
Esters
lipids
Cholesterol Esters
Fatty acids
esters
Hydroxy Acids
secretions
Fatty Acids
Chemical analysis
fatty acids
Transcriptome
sebaceous glands
Waxes
Cholesterol

Keywords

  • chromatography
  • genes
  • lipids
  • mass spectrometry
  • meibogenesis
  • meibomian glands
  • meibum

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Cite this

@article{d5397c43574a42e8b2ef689bde627b62,
title = "Comparative Transcriptomic and Lipidomic Analyses of Human Male and Female Meibomian Glands Reveal Common Signature Genes of Meibogenesis",
abstract = "Meibum is a lipid secretion that is produced by holocrine Meibomian glands (MGs). MGs are a specialized type of sebaceous glands that are embedded in the human eyelids. Chemically, meibum and sebum are different. A detailed characterization of lipidome and transcriptome of MG is required to deconvolute a complex and poorly characterized array of biosynthetic reactions (termed meibogenesis) that lead to formation of meibum. Changes in the composition and quality of meibum have been linked to various ocular disorders, some of which are more prevalent in males, while others in females. To establish the role of gender in meibogenesis in humans, we characterized MG transcriptomes and lipidomes of females and males, and identified signature genes of meibogenesis in both genders. Specimens of MG tissues were subjected to mRNA microarray analyses. Chemical composition of meibum samples was assessed chromatographically and mass spectrometrically. Both targeted and untargeted approaches were used. About 290 signature genes of meibogenesis were identified. The analyses of their expression patterns demonstrated no major differences between the genders. Lipid profiling of major classes of meibomian lipids, such as wax esters, cholesteryl esters, free cholesterol, (O)-acylated omega-hydroxy fatty acids (OAHFA), cholesteryl esters of OAHFA, and triacylglycerols, also demonstrated only minor (and random) differences in these lipids. The results of transcriptomic analyses correlated well with lipidomic data. Taken together, our data imply that in males and females, meibogenesis proceeds in a similar fashion, yielding secretions with similar, highly conserved, compositions. This finding is important for designing novel, gender-independent diagnostic and therapeutic approaches to various MG-related diseases and pathological conditions.",
keywords = "chromatography, genes, lipids, mass spectrometry, meibogenesis, meibomian glands, meibum",
author = "Igor Butovich and Nita Bhat and Wojtowicz, {Jadwiga C.}",
year = "2019",
month = "9",
day = "13",
doi = "10.3390/ijms20184539",
language = "English (US)",
volume = "20",
journal = "International Journal of Molecular Sciences",
issn = "1661-6596",
publisher = "Multidisciplinary Digital Publishing Institute (MDPI)",
number = "18",

}

TY - JOUR

T1 - Comparative Transcriptomic and Lipidomic Analyses of Human Male and Female Meibomian Glands Reveal Common Signature Genes of Meibogenesis

AU - Butovich, Igor

AU - Bhat, Nita

AU - Wojtowicz, Jadwiga C.

PY - 2019/9/13

Y1 - 2019/9/13

N2 - Meibum is a lipid secretion that is produced by holocrine Meibomian glands (MGs). MGs are a specialized type of sebaceous glands that are embedded in the human eyelids. Chemically, meibum and sebum are different. A detailed characterization of lipidome and transcriptome of MG is required to deconvolute a complex and poorly characterized array of biosynthetic reactions (termed meibogenesis) that lead to formation of meibum. Changes in the composition and quality of meibum have been linked to various ocular disorders, some of which are more prevalent in males, while others in females. To establish the role of gender in meibogenesis in humans, we characterized MG transcriptomes and lipidomes of females and males, and identified signature genes of meibogenesis in both genders. Specimens of MG tissues were subjected to mRNA microarray analyses. Chemical composition of meibum samples was assessed chromatographically and mass spectrometrically. Both targeted and untargeted approaches were used. About 290 signature genes of meibogenesis were identified. The analyses of their expression patterns demonstrated no major differences between the genders. Lipid profiling of major classes of meibomian lipids, such as wax esters, cholesteryl esters, free cholesterol, (O)-acylated omega-hydroxy fatty acids (OAHFA), cholesteryl esters of OAHFA, and triacylglycerols, also demonstrated only minor (and random) differences in these lipids. The results of transcriptomic analyses correlated well with lipidomic data. Taken together, our data imply that in males and females, meibogenesis proceeds in a similar fashion, yielding secretions with similar, highly conserved, compositions. This finding is important for designing novel, gender-independent diagnostic and therapeutic approaches to various MG-related diseases and pathological conditions.

AB - Meibum is a lipid secretion that is produced by holocrine Meibomian glands (MGs). MGs are a specialized type of sebaceous glands that are embedded in the human eyelids. Chemically, meibum and sebum are different. A detailed characterization of lipidome and transcriptome of MG is required to deconvolute a complex and poorly characterized array of biosynthetic reactions (termed meibogenesis) that lead to formation of meibum. Changes in the composition and quality of meibum have been linked to various ocular disorders, some of which are more prevalent in males, while others in females. To establish the role of gender in meibogenesis in humans, we characterized MG transcriptomes and lipidomes of females and males, and identified signature genes of meibogenesis in both genders. Specimens of MG tissues were subjected to mRNA microarray analyses. Chemical composition of meibum samples was assessed chromatographically and mass spectrometrically. Both targeted and untargeted approaches were used. About 290 signature genes of meibogenesis were identified. The analyses of their expression patterns demonstrated no major differences between the genders. Lipid profiling of major classes of meibomian lipids, such as wax esters, cholesteryl esters, free cholesterol, (O)-acylated omega-hydroxy fatty acids (OAHFA), cholesteryl esters of OAHFA, and triacylglycerols, also demonstrated only minor (and random) differences in these lipids. The results of transcriptomic analyses correlated well with lipidomic data. Taken together, our data imply that in males and females, meibogenesis proceeds in a similar fashion, yielding secretions with similar, highly conserved, compositions. This finding is important for designing novel, gender-independent diagnostic and therapeutic approaches to various MG-related diseases and pathological conditions.

KW - chromatography

KW - genes

KW - lipids

KW - mass spectrometry

KW - meibogenesis

KW - meibomian glands

KW - meibum

UR - http://www.scopus.com/inward/record.url?scp=85072539705&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85072539705&partnerID=8YFLogxK

U2 - 10.3390/ijms20184539

DO - 10.3390/ijms20184539

M3 - Article

VL - 20

JO - International Journal of Molecular Sciences

JF - International Journal of Molecular Sciences

SN - 1661-6596

IS - 18

ER -