Comprehensive profiling of Asian and Caucasian meibomian gland secretions reveals similar lipidomic signatures regardless of ethnicity

Igor A. Butovich, Tomo Suzuki, Jadwiga Wojtowicz, Nita Bhat, Seher Yuksel

Research output: Contribution to journalArticlepeer-review

Abstract

Meibum—a lipid secretion that is produced by Meibomian glands (MG) in a process termed meibogenesis—plays a critical role in ocular surface physiology. Abnormalities in the chemical composition of meibum were linked to widespread ocular pathologies—dry eye syndrome (DES) and MG dysfunction (MGD). Importantly, in epidemiologic studies the Asian population was shown to be prone to these pathologies more than the Caucasian one, which was tied to differences in their meibomian lipids. However, biochemical data to support these observations and conclusions are limited. To determine if non-DES/non-MGD Asian meibum was significantly different from that of Caucasians, individual samples of meibum collected from ethnic Asian population living in Japan were compared with those of Caucasians living in the USA. These experiments revealed that composition of major lipid classes, such as wax esters (WE), cholesteryl esters (CE), triacylglycerols, (O)-acylated ω-hydroxy fatty acids (OAHFA), cholesteryl sulfate, cholesteryl esters of OAHFA, and diacylated α,ω-dihydroxy fatty alcohols remained invariable in both races, barring a minor (< 10%; p < 0.01) increase in the Asian CE/WE ratio. Considering the natural variability range for most meibomian lipids (app. ± 15% of the Mean), these differences in meibogenesis were deemed to be minimal and unlikely to have a measurable physiological impact.

Original languageEnglish (US)
Article number14510
JournalScientific reports
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2020

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Comprehensive profiling of Asian and Caucasian meibomian gland secretions reveals similar lipidomic signatures regardless of ethnicity'. Together they form a unique fingerprint.

Cite this