Ct-less direct correction of attenuation and scatter in the image space using deep learning for whole-body fdg pet: Potential benefits and pitfalls

Jaewon Yang, Jae Ho Sohn, Spencer C. Behr, Grant T. Gullberg, Youngho Seo

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Purpose: To demonstrate the feasibility of CT-less attenuation and scatter correction (ASC) in the image space using deep learning for whole-body PET, with a focus on the potential benefits and pitfalls. Materials and Methods: In this retrospective study, 110 whole-body fluorodeoxyglucose (FDG) PET/CT studies acquired in 107 patients (mean age ± standard deviation, 58 years ± 18; age range, 11–92 years; 72 females) from February 2016 through January 2018 were randomly collected. A total of 37.3% (41 of 110) of the studies showed metastases, with diverse FDG PET findings throughout the whole body. A U-Net–based network was developed for directly transforming noncorrected PET (PETNC ) into attenuation-and scatter-corrected PET (PETASC ). Deep learning–corrected PET (PETDL ) images were quantitatively evaluated by using the standardized uptake value (SUV) of the normalized root mean square error, the peak signal-to-noise ratio, and the structural similarity index, in addition to a joint histogram for statistical analysis. Qualitative reviews by radiologists revealed the potential benefits and pitfalls of this correction method. Results: The normalized root mean square error (0.21 ± 0.05 [mean SUV ± standard deviation]), mean peak signal-to-noise ratio (36.3 ± 3.0), mean structural similarity index (0.98 ± 0.01), and voxelwise correlation (97.62%) of PETDL demonstrated quantitatively high similarity with PETASC . Radiologist reviews revealed the overall quality of PETDL . The potential benefits of PETDL include a radiation dose reduction on follow-up scans and artifact removal in the regions with attenuation correction– and scatter correction–based artifacts. The pitfalls involve potential false-negative results due to blurring or missing lesions or false-positive results due to pseudo–low-uptake patterns. Conclusion: Deep learning–based direct ASC at whole-body PET is feasible and potentially can be used to overcome the current limitations of CT-based approaches, benefiting patients who are sensitive to radiation from CT.

Original languageEnglish (US)
Article numbere200137
JournalRadiology: Artificial Intelligence
Volume3
Issue number2
DOIs
StatePublished - Mar 2021
Externally publishedYes

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging
  • Artificial Intelligence
  • Radiological and Ultrasound Technology

Fingerprint

Dive into the research topics of 'Ct-less direct correction of attenuation and scatter in the image space using deep learning for whole-body fdg pet: Potential benefits and pitfalls'. Together they form a unique fingerprint.

Cite this