Abstract
The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution – comparable to semiconductor detectors – and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require ever greater exposures, which has driven them to ever larger cryogenic detectors, with the CUORE experiment being the first to reach a tonne-scale, mK-cooled, experimental mass. CUORE, designed to search for neutrinoless double beta decay, has been operational since 2017 at a temperature of about 10 mK. This result has been attained by the use of an unprecedentedly large cryogenic infrastructure called the CUORE cryostat: conceived, designed and commissioned for this purpose. In this article the main characteristics and features of the cryogenic facility developed for the CUORE experiment are highlighted. A brief introduction of the evolution of the field and of the past cryogenic facilities are given. The motivation behind the design and development of the CUORE cryogenic facility is detailed as are the steps taken toward realization, commissioning, and operation of the CUORE cryostat. The major challenges overcome by the collaboration and the solutions implemented throughout the building of the cryogenic facility will be discussed along with the potential improvements for future facilities. The success of CUORE has opened the door to a new generation of large-scale cryogenic facilities in numerous fields of science. Broader implications of the incredible feat achieved by the CUORE collaboration on the future cryogenic facilities in various fields ranging from neutrino and dark matter experiments to quantum computing will be examined.
Original language | English (US) |
---|---|
Article number | 103902 |
Journal | Progress in Particle and Nuclear Physics |
Volume | 122 |
DOIs | |
State | Published - Jan 2022 |
Externally published | Yes |
Keywords
- Cryogenic temperatures
- Dilution refrigerator
- Low temperature calorimeter
- Neutrinoless double beta decay
- Rare event searches
- Ton-scale detector
ASJC Scopus subject areas
- Nuclear and High Energy Physics
Fingerprint
Dive into the research topics of 'CUORE opens the door to tonne-scale cryogenics experiments'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
CUORE opens the door to tonne-scale cryogenics experiments. / Adams, D. Q.; Alduino, C.; Alessandria, F.; Alfonso, K.; Andreotti, E.; Avignone, F. T.; Azzolini, O.; Balata, M.; Bandac, I.; Banks, T. I.; Bari, G.; Barucci, M.; Beeman, J. W.; Bellini, F.; Benato, G.; Beretta, M.; Bersani, A.; Biare, D.; Biassoni, M.; Bragazzi, F.; Branca, A.; Brofferio, C.; Bryant, A.; Buccheri, A.; Bucci, C.; Bulfon, C.; Camacho, A.; Camilleri, J.; Caminata, A.; Campani, A.; Canonica, L.; Cao, X. G.; Capelli, S.; Capodiferro, M.; Cappelli, L.; Cardani, L.; Cariello, M.; Carniti, P.; Carrettoni, M.; Casali, N.; Cassina, L.; Celi, E.; Cereseto, R.; Ceruti, G.; Chiarini, A.; Chiesa, D.; Chott, N.; Clemenza, M.; Conventi, D.; Copello, S.; Cosmelli, C.; Cremonesi, O.; Crescentini, C.; Creswick, R. J.; Cushman, J. S.; D'Addabbo, A.; D'Aguanno, D.; Dafinei, I.; Datskov, V.; Davis, C. J.; Corso, F. Del; Dell'Oro, S.; Deninno, M. M.; Di Domizio, S.; Dompè, V.; Di Vacri, M. L.; Di Paolo, L.; Drobizhev, A.; Ejzak, L.; Faccini, R.; Fang, D. Q.; Fantini, G.; Faverzani, M.; Ferri, E.; Ferroni, F.; Fiorini, E.; Franceschi, M. A.; Freedman, S. J.; Fu, S. H.; Fujikawa, B. K.; Gaigher, R.; Ghislandi, S.; Giachero, A.; Gironi, L.; Giuliani, A.; Gladstone, L.; Goett, J.; Gorla, P.; Gotti, C.; Guandalini, C.; Guerzoni, M.; Guetti, M.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Hansen, E. V.; Heeger, K. M.; Hennings-Yeomans, R.; Hickerson, K. P.; Huang, R. G.; Huang, H. Z.; Iannone, M.; Ioannucci, L.; Johnston, J.; Kadel, R.; Keppel, G.; Kogler, L.; Kolomensky, Yu G.; Leder, A.; Ligi, C.; Lim, K. E.; Liu, R.; Ma, L.; Ma, Y. G.; Maiano, C.; Maino, M.; Marini, L.; Martinez, M.; Amaya, C. Martinez; Maruyama, R. H.; Mayer, D.; Mazza, R.; Mei, Y.; Moggi, N.; Morganti, S.; Mosteiro, P. J.; Nagorny, S. S.; Napolitano, T.; Nastasi, M.; Nikkel, J.; Nisi, S.; Nones, C.; Norman, E. B.; Novati, V.; Nucciotti, A.; Nutini, I.; O'Donnell, T.; Olcese, M.; Olivieri, E.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pagan, S.; Pagliarone, C. E.; Pagnanini, L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pedrotta, R.; Pelosi, A.; Perego, M.; Pessina, G.; Pettinacci, V.; Piperno, G.; Pira, C.; Pirro, S.; Pozzi, S.; Previtali, E.; Puiu, A.; Quitadamo, S.; Reindl, F.; Rimondi, F.; Risegari, L.; Rosenfeld, C.; Rossi, C.; Rusconi, C.; Sakai, M.; Sala, E.; Salvioni, C.; Sangiorgio, S.; Santone, D.; Schaeffer, D.; Schmidt, B.; Schmidt, J.; Scielzo, N. D.; Sharma, V.; Singh, V.; Sisti, M.; Smith, A. R.; Speller, D.; Stivanello, F.; Surukuchi, P. T.; Taffarello, L.; Tatananni, L.; Tenconi, M.; Terranova, F.; Tessaro, M.; Tomei, C.; Ventura, G.; Vetter, K. J.; Vignati, M.; Wagaarachchi, S. L.; Wallig, J.; Wang, B. S.; Wang, H. W.; Welliver, B.; Wilson, J.; Wilson, K.; Winslow, L. A.; Wise, T.; Zanotti, L.; Zarra, C.; Zhang, G. Q.; Zhu, B. X.; Zimmermann, S.; Zucchelli, S.
In: Progress in Particle and Nuclear Physics, Vol. 122, 103902, 01.2022.Research output: Contribution to journal › Review article › peer-review
}
TY - JOUR
T1 - CUORE opens the door to tonne-scale cryogenics experiments
AU - Adams, D. Q.
AU - Alduino, C.
AU - Alessandria, F.
AU - Alfonso, K.
AU - Andreotti, E.
AU - Avignone, F. T.
AU - Azzolini, O.
AU - Balata, M.
AU - Bandac, I.
AU - Banks, T. I.
AU - Bari, G.
AU - Barucci, M.
AU - Beeman, J. W.
AU - Bellini, F.
AU - Benato, G.
AU - Beretta, M.
AU - Bersani, A.
AU - Biare, D.
AU - Biassoni, M.
AU - Bragazzi, F.
AU - Branca, A.
AU - Brofferio, C.
AU - Bryant, A.
AU - Buccheri, A.
AU - Bucci, C.
AU - Bulfon, C.
AU - Camacho, A.
AU - Camilleri, J.
AU - Caminata, A.
AU - Campani, A.
AU - Canonica, L.
AU - Cao, X. G.
AU - Capelli, S.
AU - Capodiferro, M.
AU - Cappelli, L.
AU - Cardani, L.
AU - Cariello, M.
AU - Carniti, P.
AU - Carrettoni, M.
AU - Casali, N.
AU - Cassina, L.
AU - Celi, E.
AU - Cereseto, R.
AU - Ceruti, G.
AU - Chiarini, A.
AU - Chiesa, D.
AU - Chott, N.
AU - Clemenza, M.
AU - Conventi, D.
AU - Copello, S.
AU - Cosmelli, C.
AU - Cremonesi, O.
AU - Crescentini, C.
AU - Creswick, R. J.
AU - Cushman, J. S.
AU - D'Addabbo, A.
AU - D'Aguanno, D.
AU - Dafinei, I.
AU - Datskov, V.
AU - Davis, C. J.
AU - Corso, F. Del
AU - Dell'Oro, S.
AU - Deninno, M. M.
AU - Di Domizio, S.
AU - Dompè, V.
AU - Di Vacri, M. L.
AU - Di Paolo, L.
AU - Drobizhev, A.
AU - Ejzak, L.
AU - Faccini, R.
AU - Fang, D. Q.
AU - Fantini, G.
AU - Faverzani, M.
AU - Ferri, E.
AU - Ferroni, F.
AU - Fiorini, E.
AU - Franceschi, M. A.
AU - Freedman, S. J.
AU - Fu, S. H.
AU - Fujikawa, B. K.
AU - Gaigher, R.
AU - Ghislandi, S.
AU - Giachero, A.
AU - Gironi, L.
AU - Giuliani, A.
AU - Gladstone, L.
AU - Goett, J.
AU - Gorla, P.
AU - Gotti, C.
AU - Guandalini, C.
AU - Guerzoni, M.
AU - Guetti, M.
AU - Gutierrez, T. D.
AU - Haller, E. E.
AU - Han, K.
AU - Hansen, E. V.
AU - Heeger, K. M.
AU - Hennings-Yeomans, R.
AU - Hickerson, K. P.
AU - Huang, R. G.
AU - Huang, H. Z.
AU - Iannone, M.
AU - Ioannucci, L.
AU - Johnston, J.
AU - Kadel, R.
AU - Keppel, G.
AU - Kogler, L.
AU - Kolomensky, Yu G.
AU - Leder, A.
AU - Ligi, C.
AU - Lim, K. E.
AU - Liu, R.
AU - Ma, L.
AU - Ma, Y. G.
AU - Maiano, C.
AU - Maino, M.
AU - Marini, L.
AU - Martinez, M.
AU - Amaya, C. Martinez
AU - Maruyama, R. H.
AU - Mayer, D.
AU - Mazza, R.
AU - Mei, Y.
AU - Moggi, N.
AU - Morganti, S.
AU - Mosteiro, P. J.
AU - Nagorny, S. S.
AU - Napolitano, T.
AU - Nastasi, M.
AU - Nikkel, J.
AU - Nisi, S.
AU - Nones, C.
AU - Norman, E. B.
AU - Novati, V.
AU - Nucciotti, A.
AU - Nutini, I.
AU - O'Donnell, T.
AU - Olcese, M.
AU - Olivieri, E.
AU - Orio, F.
AU - Orlandi, D.
AU - Ouellet, J. L.
AU - Pagan, S.
AU - Pagliarone, C. E.
AU - Pagnanini, L.
AU - Pallavicini, M.
AU - Palmieri, V.
AU - Pattavina, L.
AU - Pavan, M.
AU - Pedretti, M.
AU - Pedrotta, R.
AU - Pelosi, A.
AU - Perego, M.
AU - Pessina, G.
AU - Pettinacci, V.
AU - Piperno, G.
AU - Pira, C.
AU - Pirro, S.
AU - Pozzi, S.
AU - Previtali, E.
AU - Puiu, A.
AU - Quitadamo, S.
AU - Reindl, F.
AU - Rimondi, F.
AU - Risegari, L.
AU - Rosenfeld, C.
AU - Rossi, C.
AU - Rusconi, C.
AU - Sakai, M.
AU - Sala, E.
AU - Salvioni, C.
AU - Sangiorgio, S.
AU - Santone, D.
AU - Schaeffer, D.
AU - Schmidt, B.
AU - Schmidt, J.
AU - Scielzo, N. D.
AU - Sharma, V.
AU - Singh, V.
AU - Sisti, M.
AU - Smith, A. R.
AU - Speller, D.
AU - Stivanello, F.
AU - Surukuchi, P. T.
AU - Taffarello, L.
AU - Tatananni, L.
AU - Tenconi, M.
AU - Terranova, F.
AU - Tessaro, M.
AU - Tomei, C.
AU - Ventura, G.
AU - Vetter, K. J.
AU - Vignati, M.
AU - Wagaarachchi, S. L.
AU - Wallig, J.
AU - Wang, B. S.
AU - Wang, H. W.
AU - Welliver, B.
AU - Wilson, J.
AU - Wilson, K.
AU - Winslow, L. A.
AU - Wise, T.
AU - Zanotti, L.
AU - Zarra, C.
AU - Zhang, G. Q.
AU - Zhu, B. X.
AU - Zimmermann, S.
AU - Zucchelli, S.
N1 - Funding Information: The CUORE Collaboration thanks the directors and staff of the Laboratori Nazionali del Gran Sasso and the technical staff of our laboratories. This work was supported by the Istituto Nazionale di Fisica Nucleare (INFN) ; the National Science Foundation under Grant Nos. NSF-PHY-0605119 , NSF-PHY-0500337 , NSF-PHY-0855314 , NSF-PHY-0902171 , NSF-PHY-0969852 , NSF-PHY-1307204 , NSF-PHY-1314881 , NSF-PHY-1401832 , and NSF-PHY-1913374 ; and Yale University . This material is also based upon work supported by the US Department of Energy (DOE) Office of Science under Contract Nos. DE-AC02-05CH11231 and DE-AC52-07NA27344 ; by the DOE Office of Science, Office of Nuclear Physics under Contract Nos. DE-FG02-08ER41551 , DE-FG03-00ER41138 , DE-SC0012654 , DE-SC0020423 , DE-SC0019316 ; and by the EU Horizon2020 research and innovation program under the Marie Sklodowska-Curie Grant Agreement No. 754496 . This research used resources of the National Energy Research Scientific Computing Center (NERSC). This work makes use of both the DIANA data analysis and APOLLO data acquisition software packages, which were developed by the CUORICINO, CUORE, LUCIFER and CUPID-0 Collaborations. Publisher Copyright: © 2021 Elsevier B.V.
PY - 2022/1
Y1 - 2022/1
N2 - The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution – comparable to semiconductor detectors – and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require ever greater exposures, which has driven them to ever larger cryogenic detectors, with the CUORE experiment being the first to reach a tonne-scale, mK-cooled, experimental mass. CUORE, designed to search for neutrinoless double beta decay, has been operational since 2017 at a temperature of about 10 mK. This result has been attained by the use of an unprecedentedly large cryogenic infrastructure called the CUORE cryostat: conceived, designed and commissioned for this purpose. In this article the main characteristics and features of the cryogenic facility developed for the CUORE experiment are highlighted. A brief introduction of the evolution of the field and of the past cryogenic facilities are given. The motivation behind the design and development of the CUORE cryogenic facility is detailed as are the steps taken toward realization, commissioning, and operation of the CUORE cryostat. The major challenges overcome by the collaboration and the solutions implemented throughout the building of the cryogenic facility will be discussed along with the potential improvements for future facilities. The success of CUORE has opened the door to a new generation of large-scale cryogenic facilities in numerous fields of science. Broader implications of the incredible feat achieved by the CUORE collaboration on the future cryogenic facilities in various fields ranging from neutrino and dark matter experiments to quantum computing will be examined.
AB - The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution – comparable to semiconductor detectors – and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require ever greater exposures, which has driven them to ever larger cryogenic detectors, with the CUORE experiment being the first to reach a tonne-scale, mK-cooled, experimental mass. CUORE, designed to search for neutrinoless double beta decay, has been operational since 2017 at a temperature of about 10 mK. This result has been attained by the use of an unprecedentedly large cryogenic infrastructure called the CUORE cryostat: conceived, designed and commissioned for this purpose. In this article the main characteristics and features of the cryogenic facility developed for the CUORE experiment are highlighted. A brief introduction of the evolution of the field and of the past cryogenic facilities are given. The motivation behind the design and development of the CUORE cryogenic facility is detailed as are the steps taken toward realization, commissioning, and operation of the CUORE cryostat. The major challenges overcome by the collaboration and the solutions implemented throughout the building of the cryogenic facility will be discussed along with the potential improvements for future facilities. The success of CUORE has opened the door to a new generation of large-scale cryogenic facilities in numerous fields of science. Broader implications of the incredible feat achieved by the CUORE collaboration on the future cryogenic facilities in various fields ranging from neutrino and dark matter experiments to quantum computing will be examined.
KW - Cryogenic temperatures
KW - Dilution refrigerator
KW - Low temperature calorimeter
KW - Neutrinoless double beta decay
KW - Rare event searches
KW - Ton-scale detector
UR - http://www.scopus.com/inward/record.url?scp=85115181714&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85115181714&partnerID=8YFLogxK
U2 - 10.1016/j.ppnp.2021.103902
DO - 10.1016/j.ppnp.2021.103902
M3 - Review article
AN - SCOPUS:85115181714
VL - 122
JO - Progress in Particle and Nuclear Physics
JF - Progress in Particle and Nuclear Physics
SN - 0146-6410
M1 - 103902
ER -