Destructive and nondestructive patterns of immune rejection of syngeneic intraocular tumors

T. L. Knisely, M. W. Luckenbach, B. J. Fischer, J. Y. Niederkorn

Research output: Contribution to journalArticle

51 Citations (Scopus)

Abstract

Two immunogenic, syngeneic murine tumors were used to analyze the immunopathological processes associated with the immune rejection of primary intraocular tumors. Intracameral inoculation of P91 mastocytoma, an immunogenic variant of P815 mastocytoma, into DBA/2 mice resulted in progressive tumor growth for several weeks before immune rejection eradicated the intraocular neoplasm. The histopathologic characteristics of the tumor rejection included: a) destruction of the vascular endothelium of the microvasculature feeding the tumor; b) ischemic bulk necrosis; c) extensive innocent bystander damage to normal ocular structures; and d) absence of direct inflammatory cell-to-tumor cell contact. Thus, the immunopathological features resembled a delayed-type hypersensitivity (DTH) lesion. A second intraocular tumor model was similarly studied. UV5C25 fibrosarcoma grew slowly in the eyes of syngeneic BALB/c hosts. In sharp contrast to P91 tumors, a mononuclear cellular infiltrate was prominent within the tumor. After 5 wk, the intraocular tumors were completely rejected without detectable damage to normal ocular structures. The rejection of UV5C25 tumors did not produce scar tissue, damage to vascular endothelium, bulk necrosis, or atrophy of the globe. Although tumor-specific cytotoxic T lymphocytes (CTL) and DTH responses were readily detected, there was no histological evidence for DTH-mediated tumor rejection. Moreover, in situ immunoperoxidase staining indicated that the majority of the infiltrating lymphocytes were CTL, based on their characteristic phenotype: Thy-1+, Lyt-2+. Furthermore, the growth of UV5C25 fibrosarcoma in athymic, natural killer (NK) cell competent BALB/c nude mice demonstrated progressive tumor growth without infiltrating host cells. Collectively, the results indicate that immunogenic intraocular tumors can undergo strikingly different patterns of immune rejection with profoundly different pathological consequences. In one case (P91), tumor rejection occurs by a process that strongly resembles DTH and produces extensive nonspecific damage to normal tissues, resulting in irrevocable loss of vision. In contrast, the second intraocular tumor undergoes an immune rejection that is characterized by precision and a notable absence of damage to normal ocular tissues. The weight of evidence presented here strongly supports the hypothesis that the latter form of tumor rejection is mediated by CTL. Thus, the immunologic pathway invoked for tumor rejection in the eye has a profound effect on the fate of this delicate organ and the preservation of vision.

Original languageEnglish (US)
Pages (from-to)4515-4523
Number of pages9
JournalJournal of Immunology
Volume138
Issue number12
StatePublished - 1987

Fingerprint

Neoplasms
Delayed Hypersensitivity
Cytotoxic T-Lymphocytes
Mastocytoma
Fibrosarcoma
Vascular Endothelium
Necrosis
Growth
Organ Preservation
Inbred DBA Mouse
Microvessels
Rejection (Psychology)
Nude Mice
Natural Killer Cells
Atrophy
Cicatrix
Lymphocytes
Staining and Labeling
Phenotype
Weights and Measures

ASJC Scopus subject areas

  • Immunology

Cite this

Destructive and nondestructive patterns of immune rejection of syngeneic intraocular tumors. / Knisely, T. L.; Luckenbach, M. W.; Fischer, B. J.; Niederkorn, J. Y.

In: Journal of Immunology, Vol. 138, No. 12, 1987, p. 4515-4523.

Research output: Contribution to journalArticle

Knisely, T. L. ; Luckenbach, M. W. ; Fischer, B. J. ; Niederkorn, J. Y. / Destructive and nondestructive patterns of immune rejection of syngeneic intraocular tumors. In: Journal of Immunology. 1987 ; Vol. 138, No. 12. pp. 4515-4523.
@article{27a032056ceb4ba6b94c573073b5cfaa,
title = "Destructive and nondestructive patterns of immune rejection of syngeneic intraocular tumors",
abstract = "Two immunogenic, syngeneic murine tumors were used to analyze the immunopathological processes associated with the immune rejection of primary intraocular tumors. Intracameral inoculation of P91 mastocytoma, an immunogenic variant of P815 mastocytoma, into DBA/2 mice resulted in progressive tumor growth for several weeks before immune rejection eradicated the intraocular neoplasm. The histopathologic characteristics of the tumor rejection included: a) destruction of the vascular endothelium of the microvasculature feeding the tumor; b) ischemic bulk necrosis; c) extensive innocent bystander damage to normal ocular structures; and d) absence of direct inflammatory cell-to-tumor cell contact. Thus, the immunopathological features resembled a delayed-type hypersensitivity (DTH) lesion. A second intraocular tumor model was similarly studied. UV5C25 fibrosarcoma grew slowly in the eyes of syngeneic BALB/c hosts. In sharp contrast to P91 tumors, a mononuclear cellular infiltrate was prominent within the tumor. After 5 wk, the intraocular tumors were completely rejected without detectable damage to normal ocular structures. The rejection of UV5C25 tumors did not produce scar tissue, damage to vascular endothelium, bulk necrosis, or atrophy of the globe. Although tumor-specific cytotoxic T lymphocytes (CTL) and DTH responses were readily detected, there was no histological evidence for DTH-mediated tumor rejection. Moreover, in situ immunoperoxidase staining indicated that the majority of the infiltrating lymphocytes were CTL, based on their characteristic phenotype: Thy-1+, Lyt-2+. Furthermore, the growth of UV5C25 fibrosarcoma in athymic, natural killer (NK) cell competent BALB/c nude mice demonstrated progressive tumor growth without infiltrating host cells. Collectively, the results indicate that immunogenic intraocular tumors can undergo strikingly different patterns of immune rejection with profoundly different pathological consequences. In one case (P91), tumor rejection occurs by a process that strongly resembles DTH and produces extensive nonspecific damage to normal tissues, resulting in irrevocable loss of vision. In contrast, the second intraocular tumor undergoes an immune rejection that is characterized by precision and a notable absence of damage to normal ocular tissues. The weight of evidence presented here strongly supports the hypothesis that the latter form of tumor rejection is mediated by CTL. Thus, the immunologic pathway invoked for tumor rejection in the eye has a profound effect on the fate of this delicate organ and the preservation of vision.",
author = "Knisely, {T. L.} and Luckenbach, {M. W.} and Fischer, {B. J.} and Niederkorn, {J. Y.}",
year = "1987",
language = "English (US)",
volume = "138",
pages = "4515--4523",
journal = "Journal of Immunology",
issn = "0022-1767",
publisher = "American Association of Immunologists",
number = "12",

}

TY - JOUR

T1 - Destructive and nondestructive patterns of immune rejection of syngeneic intraocular tumors

AU - Knisely, T. L.

AU - Luckenbach, M. W.

AU - Fischer, B. J.

AU - Niederkorn, J. Y.

PY - 1987

Y1 - 1987

N2 - Two immunogenic, syngeneic murine tumors were used to analyze the immunopathological processes associated with the immune rejection of primary intraocular tumors. Intracameral inoculation of P91 mastocytoma, an immunogenic variant of P815 mastocytoma, into DBA/2 mice resulted in progressive tumor growth for several weeks before immune rejection eradicated the intraocular neoplasm. The histopathologic characteristics of the tumor rejection included: a) destruction of the vascular endothelium of the microvasculature feeding the tumor; b) ischemic bulk necrosis; c) extensive innocent bystander damage to normal ocular structures; and d) absence of direct inflammatory cell-to-tumor cell contact. Thus, the immunopathological features resembled a delayed-type hypersensitivity (DTH) lesion. A second intraocular tumor model was similarly studied. UV5C25 fibrosarcoma grew slowly in the eyes of syngeneic BALB/c hosts. In sharp contrast to P91 tumors, a mononuclear cellular infiltrate was prominent within the tumor. After 5 wk, the intraocular tumors were completely rejected without detectable damage to normal ocular structures. The rejection of UV5C25 tumors did not produce scar tissue, damage to vascular endothelium, bulk necrosis, or atrophy of the globe. Although tumor-specific cytotoxic T lymphocytes (CTL) and DTH responses were readily detected, there was no histological evidence for DTH-mediated tumor rejection. Moreover, in situ immunoperoxidase staining indicated that the majority of the infiltrating lymphocytes were CTL, based on their characteristic phenotype: Thy-1+, Lyt-2+. Furthermore, the growth of UV5C25 fibrosarcoma in athymic, natural killer (NK) cell competent BALB/c nude mice demonstrated progressive tumor growth without infiltrating host cells. Collectively, the results indicate that immunogenic intraocular tumors can undergo strikingly different patterns of immune rejection with profoundly different pathological consequences. In one case (P91), tumor rejection occurs by a process that strongly resembles DTH and produces extensive nonspecific damage to normal tissues, resulting in irrevocable loss of vision. In contrast, the second intraocular tumor undergoes an immune rejection that is characterized by precision and a notable absence of damage to normal ocular tissues. The weight of evidence presented here strongly supports the hypothesis that the latter form of tumor rejection is mediated by CTL. Thus, the immunologic pathway invoked for tumor rejection in the eye has a profound effect on the fate of this delicate organ and the preservation of vision.

AB - Two immunogenic, syngeneic murine tumors were used to analyze the immunopathological processes associated with the immune rejection of primary intraocular tumors. Intracameral inoculation of P91 mastocytoma, an immunogenic variant of P815 mastocytoma, into DBA/2 mice resulted in progressive tumor growth for several weeks before immune rejection eradicated the intraocular neoplasm. The histopathologic characteristics of the tumor rejection included: a) destruction of the vascular endothelium of the microvasculature feeding the tumor; b) ischemic bulk necrosis; c) extensive innocent bystander damage to normal ocular structures; and d) absence of direct inflammatory cell-to-tumor cell contact. Thus, the immunopathological features resembled a delayed-type hypersensitivity (DTH) lesion. A second intraocular tumor model was similarly studied. UV5C25 fibrosarcoma grew slowly in the eyes of syngeneic BALB/c hosts. In sharp contrast to P91 tumors, a mononuclear cellular infiltrate was prominent within the tumor. After 5 wk, the intraocular tumors were completely rejected without detectable damage to normal ocular structures. The rejection of UV5C25 tumors did not produce scar tissue, damage to vascular endothelium, bulk necrosis, or atrophy of the globe. Although tumor-specific cytotoxic T lymphocytes (CTL) and DTH responses were readily detected, there was no histological evidence for DTH-mediated tumor rejection. Moreover, in situ immunoperoxidase staining indicated that the majority of the infiltrating lymphocytes were CTL, based on their characteristic phenotype: Thy-1+, Lyt-2+. Furthermore, the growth of UV5C25 fibrosarcoma in athymic, natural killer (NK) cell competent BALB/c nude mice demonstrated progressive tumor growth without infiltrating host cells. Collectively, the results indicate that immunogenic intraocular tumors can undergo strikingly different patterns of immune rejection with profoundly different pathological consequences. In one case (P91), tumor rejection occurs by a process that strongly resembles DTH and produces extensive nonspecific damage to normal tissues, resulting in irrevocable loss of vision. In contrast, the second intraocular tumor undergoes an immune rejection that is characterized by precision and a notable absence of damage to normal ocular tissues. The weight of evidence presented here strongly supports the hypothesis that the latter form of tumor rejection is mediated by CTL. Thus, the immunologic pathway invoked for tumor rejection in the eye has a profound effect on the fate of this delicate organ and the preservation of vision.

UR - http://www.scopus.com/inward/record.url?scp=0023177782&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0023177782&partnerID=8YFLogxK

M3 - Article

VL - 138

SP - 4515

EP - 4523

JO - Journal of Immunology

JF - Journal of Immunology

SN - 0022-1767

IS - 12

ER -