Developing a computer-aided image analysis and visualization tool to predict region-specific brain tissue "at risk" for developing acute ischemic stroke

Gopichandh Danala, Morteza Heidari, Faranak Aghaei, Bappaditya Ray, Bin Zheng

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Advent of advanced imaging technology and better neuro-interventional equipment have resulted in timely diagnosis and effective treatment for acute ischemic stroke (AIS) due to large vessel occlusion (LVO). However, objective clinicoradiologic correlate to identify appropriate candidates and their respective clinical outcome is largely unknown. The purpose of the study is to develop and test a new computer-aided detection algorithm to quantify region-specific AIS and "at risk" brain volumes prior to thrombectomy using CT perfusion imaging protocol. Fourteen patients with LVO related AIS and assessed radiologically for their eligibility to undergo mechanical thrombectomy was retrospectively analyzed for the study. First, the scheme automatically categorizes images into multiple series of scans acquired from a section of brain. Each image in series is labeled to a specified brain location. Next, image segmentation is performed to separate brain region from skull. The brain is then split into left and right hemispheres, followed by detecting amount of blood in each hemisphere. Last, comparison between amount of blood in each hemisphere over the series of scans is made to observe the wash-in and wash-out rate of blood to assess the extent of already damaged and "at risk" brain tissue. By integrating the scheme into a user graphic interface, the study builds a unique image feature analysis and visualization tool to observe and quantify the delayed or reduced blood flow (brain "at risk" to develop AIS) in the corresponding hemisphere, which has potential to assist radiologists to quickly visualize and more accurately assess the extent of AIS.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2019
Subtitle of host publicationBiomedical Applications in Molecular, Structural, and Functional Imaging
EditorsBarjor Gimi, Andrzej Krol
PublisherSPIE
ISBN (Electronic)9781510625532
DOIs
StatePublished - Jan 1 2019
Externally publishedYes
EventMedical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging - San Diego, United States
Duration: Feb 19 2019Feb 21 2019

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10953
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging
CountryUnited States
CitySan Diego
Period2/19/192/21/19

Keywords

  • Acute ischemic stroke (AIS)
  • and mechanical thrombectomy
  • computer-aided detection (CAD)
  • large vessel occlusion (LVO)

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Developing a computer-aided image analysis and visualization tool to predict region-specific brain tissue "at risk" for developing acute ischemic stroke'. Together they form a unique fingerprint.

Cite this