Development of aliphatic biodegradable photoluminescent polymers

Jian Yang, Yi Zhang, Santosh Gautam, Li Liu, Jagannath Dey, Wei Chen, Ralph P. Mason, Carlos A. Serrano, Kevin A. Schug, Liping Tang

Research output: Contribution to journalArticle

142 Citations (Scopus)

Abstract

None of the current biodegradable polymers can function as both implant materials and fluorescent imaging probes. The objective of this study was to develop aliphatic biodegradable photoluminescent polymers (BPLPs) and their associated cross-linked variants (CBPLPs) for biomedical applications. BPLPs are degradable oligomers synthesized from biocompatible monomers including citric acid, aliphatic diols, and various amino acids via a convenient and cost-effective polycondensation reaction. BPLPs can be further cross-linked into elastomeric cross-linked polymers, CBPLPs. We have shown representatively that BPLP-cysteine (BPLP-Cys) and BPLP-serine (BPLP-Ser) offer advantages over the traditional fluorescent organic dyes and quantum dots because of their preliminarily demonstrated cytocompatibility in vitro, minimal chronic inflammatory responses in vivo, controlled degradability and high quantum yields (up to 62.33%), tunable fluorescence emission (up to 725 nm), and photostability. The tensile strength of CBPLP-Cys film ranged from 3.25 ± 0.13 MPa to 6.5 ± 0.8 MPa and the initial Modulus was in a range of 3.34 ± 0.15 MPa to 7.02 ± 1.40 MPa. Elastic CBPLP-Cys could be elongated up to 240 ± 36%. The compressive modulus of BPLP-Cys (0.6) (1:1:0.6 OD:CA:Cys) porous scaffold was 39.60 ± 5.90 KPa confirming the soft nature of the scaffolds. BPLPs also possess great processability for micro/nanofabrication. We demonstrate the feasibility of using BPLP-Ser nanoparticles ("biodegradable quantum dots") for in vitro cellular labeling and noninvasive in vivo imaging of tissue engineering scaffolds. The development of BPLPs and CBPLPs represents a new direction in developing fluorescent biomaterials and could impact tissue engineering, drug delivery, bioimaging.

Original languageEnglish (US)
Pages (from-to)10086-10091
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume106
Issue number25
DOIs
StatePublished - Jun 23 2009

Fingerprint

Polymers
Quantum Dots
Tissue Engineering
Fluorescent Dyes
Tissue Scaffolds
Tensile Strength
Biocompatible Materials
Motion Pictures
Citric Acid
Nanoparticles
Serine
Cysteine
Fluorescence
Amino Acids
Costs and Cost Analysis

Keywords

  • Bioimaging
  • Elastomers
  • Photoluminescence
  • Tissue engineering

ASJC Scopus subject areas

  • General

Cite this

Development of aliphatic biodegradable photoluminescent polymers. / Yang, Jian; Zhang, Yi; Gautam, Santosh; Liu, Li; Dey, Jagannath; Chen, Wei; Mason, Ralph P.; Serrano, Carlos A.; Schug, Kevin A.; Tang, Liping.

In: Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 25, 23.06.2009, p. 10086-10091.

Research output: Contribution to journalArticle

Yang, Jian ; Zhang, Yi ; Gautam, Santosh ; Liu, Li ; Dey, Jagannath ; Chen, Wei ; Mason, Ralph P. ; Serrano, Carlos A. ; Schug, Kevin A. ; Tang, Liping. / Development of aliphatic biodegradable photoluminescent polymers. In: Proceedings of the National Academy of Sciences of the United States of America. 2009 ; Vol. 106, No. 25. pp. 10086-10091.
@article{cab415015bde4da9a22a4f39cfdf56ee,
title = "Development of aliphatic biodegradable photoluminescent polymers",
abstract = "None of the current biodegradable polymers can function as both implant materials and fluorescent imaging probes. The objective of this study was to develop aliphatic biodegradable photoluminescent polymers (BPLPs) and their associated cross-linked variants (CBPLPs) for biomedical applications. BPLPs are degradable oligomers synthesized from biocompatible monomers including citric acid, aliphatic diols, and various amino acids via a convenient and cost-effective polycondensation reaction. BPLPs can be further cross-linked into elastomeric cross-linked polymers, CBPLPs. We have shown representatively that BPLP-cysteine (BPLP-Cys) and BPLP-serine (BPLP-Ser) offer advantages over the traditional fluorescent organic dyes and quantum dots because of their preliminarily demonstrated cytocompatibility in vitro, minimal chronic inflammatory responses in vivo, controlled degradability and high quantum yields (up to 62.33{\%}), tunable fluorescence emission (up to 725 nm), and photostability. The tensile strength of CBPLP-Cys film ranged from 3.25 ± 0.13 MPa to 6.5 ± 0.8 MPa and the initial Modulus was in a range of 3.34 ± 0.15 MPa to 7.02 ± 1.40 MPa. Elastic CBPLP-Cys could be elongated up to 240 ± 36{\%}. The compressive modulus of BPLP-Cys (0.6) (1:1:0.6 OD:CA:Cys) porous scaffold was 39.60 ± 5.90 KPa confirming the soft nature of the scaffolds. BPLPs also possess great processability for micro/nanofabrication. We demonstrate the feasibility of using BPLP-Ser nanoparticles ({"}biodegradable quantum dots{"}) for in vitro cellular labeling and noninvasive in vivo imaging of tissue engineering scaffolds. The development of BPLPs and CBPLPs represents a new direction in developing fluorescent biomaterials and could impact tissue engineering, drug delivery, bioimaging.",
keywords = "Bioimaging, Elastomers, Photoluminescence, Tissue engineering",
author = "Jian Yang and Yi Zhang and Santosh Gautam and Li Liu and Jagannath Dey and Wei Chen and Mason, {Ralph P.} and Serrano, {Carlos A.} and Schug, {Kevin A.} and Liping Tang",
year = "2009",
month = "6",
day = "23",
doi = "10.1073/pnas.0900004106",
language = "English (US)",
volume = "106",
pages = "10086--10091",
journal = "Proceedings of the National Academy of Sciences of the United States of America",
issn = "0027-8424",
number = "25",

}

TY - JOUR

T1 - Development of aliphatic biodegradable photoluminescent polymers

AU - Yang, Jian

AU - Zhang, Yi

AU - Gautam, Santosh

AU - Liu, Li

AU - Dey, Jagannath

AU - Chen, Wei

AU - Mason, Ralph P.

AU - Serrano, Carlos A.

AU - Schug, Kevin A.

AU - Tang, Liping

PY - 2009/6/23

Y1 - 2009/6/23

N2 - None of the current biodegradable polymers can function as both implant materials and fluorescent imaging probes. The objective of this study was to develop aliphatic biodegradable photoluminescent polymers (BPLPs) and their associated cross-linked variants (CBPLPs) for biomedical applications. BPLPs are degradable oligomers synthesized from biocompatible monomers including citric acid, aliphatic diols, and various amino acids via a convenient and cost-effective polycondensation reaction. BPLPs can be further cross-linked into elastomeric cross-linked polymers, CBPLPs. We have shown representatively that BPLP-cysteine (BPLP-Cys) and BPLP-serine (BPLP-Ser) offer advantages over the traditional fluorescent organic dyes and quantum dots because of their preliminarily demonstrated cytocompatibility in vitro, minimal chronic inflammatory responses in vivo, controlled degradability and high quantum yields (up to 62.33%), tunable fluorescence emission (up to 725 nm), and photostability. The tensile strength of CBPLP-Cys film ranged from 3.25 ± 0.13 MPa to 6.5 ± 0.8 MPa and the initial Modulus was in a range of 3.34 ± 0.15 MPa to 7.02 ± 1.40 MPa. Elastic CBPLP-Cys could be elongated up to 240 ± 36%. The compressive modulus of BPLP-Cys (0.6) (1:1:0.6 OD:CA:Cys) porous scaffold was 39.60 ± 5.90 KPa confirming the soft nature of the scaffolds. BPLPs also possess great processability for micro/nanofabrication. We demonstrate the feasibility of using BPLP-Ser nanoparticles ("biodegradable quantum dots") for in vitro cellular labeling and noninvasive in vivo imaging of tissue engineering scaffolds. The development of BPLPs and CBPLPs represents a new direction in developing fluorescent biomaterials and could impact tissue engineering, drug delivery, bioimaging.

AB - None of the current biodegradable polymers can function as both implant materials and fluorescent imaging probes. The objective of this study was to develop aliphatic biodegradable photoluminescent polymers (BPLPs) and their associated cross-linked variants (CBPLPs) for biomedical applications. BPLPs are degradable oligomers synthesized from biocompatible monomers including citric acid, aliphatic diols, and various amino acids via a convenient and cost-effective polycondensation reaction. BPLPs can be further cross-linked into elastomeric cross-linked polymers, CBPLPs. We have shown representatively that BPLP-cysteine (BPLP-Cys) and BPLP-serine (BPLP-Ser) offer advantages over the traditional fluorescent organic dyes and quantum dots because of their preliminarily demonstrated cytocompatibility in vitro, minimal chronic inflammatory responses in vivo, controlled degradability and high quantum yields (up to 62.33%), tunable fluorescence emission (up to 725 nm), and photostability. The tensile strength of CBPLP-Cys film ranged from 3.25 ± 0.13 MPa to 6.5 ± 0.8 MPa and the initial Modulus was in a range of 3.34 ± 0.15 MPa to 7.02 ± 1.40 MPa. Elastic CBPLP-Cys could be elongated up to 240 ± 36%. The compressive modulus of BPLP-Cys (0.6) (1:1:0.6 OD:CA:Cys) porous scaffold was 39.60 ± 5.90 KPa confirming the soft nature of the scaffolds. BPLPs also possess great processability for micro/nanofabrication. We demonstrate the feasibility of using BPLP-Ser nanoparticles ("biodegradable quantum dots") for in vitro cellular labeling and noninvasive in vivo imaging of tissue engineering scaffolds. The development of BPLPs and CBPLPs represents a new direction in developing fluorescent biomaterials and could impact tissue engineering, drug delivery, bioimaging.

KW - Bioimaging

KW - Elastomers

KW - Photoluminescence

KW - Tissue engineering

UR - http://www.scopus.com/inward/record.url?scp=67649858776&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67649858776&partnerID=8YFLogxK

U2 - 10.1073/pnas.0900004106

DO - 10.1073/pnas.0900004106

M3 - Article

C2 - 19506254

AN - SCOPUS:67649858776

VL - 106

SP - 10086

EP - 10091

JO - Proceedings of the National Academy of Sciences of the United States of America

JF - Proceedings of the National Academy of Sciences of the United States of America

SN - 0027-8424

IS - 25

ER -