Digital biomarkers of symptom burden self-reported by perioperative patients undergoing pancreatic surgery: Prospective longitudinal study

Carissa A. Low, Meng Li, Julio Vega, Krina C. Durica, Denzil Ferreira, Vernissia Tam, Melissa Hogg, Herbert Zeh, Afsaneh Doryab, Anind K. Dey

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Cancer treatments can cause a variety of symptoms that impair quality of life and functioning but are frequently missed by clinicians. Smartphone and wearable sensors may capture behavioral and physiological changes indicative of symptom burden, enabling passive and remote real-time monitoring of fluctuating symptoms Objective: The aim of this study was to examine whether smartphone and Fitbit data could be used to estimate daily symptom burden before and after pancreatic surgery. Methods: A total of 44 patients scheduled for pancreatic surgery participated in this prospective longitudinal study and provided sufficient sensor and self-reported symptom data for analyses. Participants collected smartphone sensor and Fitbit data and completed daily symptom ratings starting at least two weeks before surgery, throughout their inpatient recovery, and for up to 60 days after postoperative discharge. Day-level behavioral features reflecting mobility and activity patterns, sleep, screen time, heart rate, and communication were extracted from raw smartphone and Fitbit data and used to classify the next day as high or low symptom burden, adjusted for each individual's typical level of reported symptoms. In addition to the overall symptom burden, we examined pain, fatigue, and diarrhea specifically. Results: Models using light gradient boosting machine (LightGBM) were able to correctly predict whether the next day would be a high symptom day with 73.5% accuracy, surpassing baseline models. The most important sensor features for discriminating high symptom days were related to physical activity bouts, sleep, heart rate, and location. LightGBM models predicting next-day diarrhea (79.0% accuracy), fatigue (75.8% accuracy), and pain (79.6% accuracy) performed similarly. Conclusions: Results suggest that digital biomarkers may be useful in predicting patient-reported symptom burden before and after cancer surgery. Although model performance in this small sample may not be adequate for clinical implementation, findings support the feasibility of collecting mobile sensor data from older patients who are acutely ill as well as the potential clinical value of mobile sensing for passive monitoring of patients with cancer and suggest that data from devices that many patients already own and use may be useful in detecting worsening perioperative symptoms and triggering just-in-time symptom management interventions.

Original languageEnglish (US)
Article numbere27975
JournalJMIR Cancer
Volume7
Issue number2
DOIs
StatePublished - Apr 2021

Keywords

  • Cancer
  • Mobile phone
  • Mobile sensing
  • Smartphone
  • Surgery
  • Symptom
  • Wearable device

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'Digital biomarkers of symptom burden self-reported by perioperative patients undergoing pancreatic surgery: Prospective longitudinal study'. Together they form a unique fingerprint.

Cite this