Dimensional analysis of right and left ventricles during positive-pressure ventilation in dogs.

S. S. Cassidy, J. H. Mitchell, R. L. Johnson

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Our purpose was to determine the effects of controlled ventilation with positive end-expired pressure (PEEP) on ventricular dimensions and to relate changes in shape to changes in stroke volume and left ventricular volumes. Left and right ventricular dimensions were measured using biplane cinefluorography of dogs with radiopaque markers implanted in their hearts, and left ventricular volumes were derived from left ventricular dimensions by assuming that the left ventricle conformed to the shape of a nonprolate ellipsoid. As PEEP increased from 0 to 5, 10, and 15 cmH2O, stroke volume fell 36%, and all three left ventricular end-diastolic dimensions fell, with apex-base falling 5%, anterior-posterior falling 7%, and septal-lateral falling nearly twice as much, 12%. This resulted in a 11.3 cm3 fall in left ventricular end-diastolic volume. The right ventricular end-diastolic dimensions changed in opposite directions with respect to each other as the level and PEEP was raised to 15 cmH2O; one axis fell 3.2 mm, and the midpoint of the right ventricular free wall moved outward by 1.7 mm. Thus the fall in cardiac output (and stroke volume) during PEEP was associated with a fall in left ventricular end-diastolic volume and a change both left and right ventricular configurations. It is not known whether the left ventricular septal-lateral narrowing is the consequence of lateral wall compression by the lungs or encroachment on the left ventricle by the septum.

Original languageEnglish (US)
JournalThe American journal of physiology
Volume242
Issue number4
StatePublished - Apr 1982

Fingerprint

Positive-Pressure Respiration
Stroke Volume
Heart Ventricles
Dogs
Pressure
Cineradiography
Cardiac Volume
Ventricular Pressure
Cardiac Output
Ventilation
Lung

ASJC Scopus subject areas

  • Medicine(all)

Cite this

Dimensional analysis of right and left ventricles during positive-pressure ventilation in dogs. / Cassidy, S. S.; Mitchell, J. H.; Johnson, R. L.

In: The American journal of physiology, Vol. 242, No. 4, 04.1982.

Research output: Contribution to journalArticle

@article{e74ef283fa7945ada1af01ff9e4c3f18,
title = "Dimensional analysis of right and left ventricles during positive-pressure ventilation in dogs.",
abstract = "Our purpose was to determine the effects of controlled ventilation with positive end-expired pressure (PEEP) on ventricular dimensions and to relate changes in shape to changes in stroke volume and left ventricular volumes. Left and right ventricular dimensions were measured using biplane cinefluorography of dogs with radiopaque markers implanted in their hearts, and left ventricular volumes were derived from left ventricular dimensions by assuming that the left ventricle conformed to the shape of a nonprolate ellipsoid. As PEEP increased from 0 to 5, 10, and 15 cmH2O, stroke volume fell 36{\%}, and all three left ventricular end-diastolic dimensions fell, with apex-base falling 5{\%}, anterior-posterior falling 7{\%}, and septal-lateral falling nearly twice as much, 12{\%}. This resulted in a 11.3 cm3 fall in left ventricular end-diastolic volume. The right ventricular end-diastolic dimensions changed in opposite directions with respect to each other as the level and PEEP was raised to 15 cmH2O; one axis fell 3.2 mm, and the midpoint of the right ventricular free wall moved outward by 1.7 mm. Thus the fall in cardiac output (and stroke volume) during PEEP was associated with a fall in left ventricular end-diastolic volume and a change both left and right ventricular configurations. It is not known whether the left ventricular septal-lateral narrowing is the consequence of lateral wall compression by the lungs or encroachment on the left ventricle by the septum.",
author = "Cassidy, {S. S.} and Mitchell, {J. H.} and Johnson, {R. L.}",
year = "1982",
month = "4",
language = "English (US)",
volume = "242",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "4",

}

TY - JOUR

T1 - Dimensional analysis of right and left ventricles during positive-pressure ventilation in dogs.

AU - Cassidy, S. S.

AU - Mitchell, J. H.

AU - Johnson, R. L.

PY - 1982/4

Y1 - 1982/4

N2 - Our purpose was to determine the effects of controlled ventilation with positive end-expired pressure (PEEP) on ventricular dimensions and to relate changes in shape to changes in stroke volume and left ventricular volumes. Left and right ventricular dimensions were measured using biplane cinefluorography of dogs with radiopaque markers implanted in their hearts, and left ventricular volumes were derived from left ventricular dimensions by assuming that the left ventricle conformed to the shape of a nonprolate ellipsoid. As PEEP increased from 0 to 5, 10, and 15 cmH2O, stroke volume fell 36%, and all three left ventricular end-diastolic dimensions fell, with apex-base falling 5%, anterior-posterior falling 7%, and septal-lateral falling nearly twice as much, 12%. This resulted in a 11.3 cm3 fall in left ventricular end-diastolic volume. The right ventricular end-diastolic dimensions changed in opposite directions with respect to each other as the level and PEEP was raised to 15 cmH2O; one axis fell 3.2 mm, and the midpoint of the right ventricular free wall moved outward by 1.7 mm. Thus the fall in cardiac output (and stroke volume) during PEEP was associated with a fall in left ventricular end-diastolic volume and a change both left and right ventricular configurations. It is not known whether the left ventricular septal-lateral narrowing is the consequence of lateral wall compression by the lungs or encroachment on the left ventricle by the septum.

AB - Our purpose was to determine the effects of controlled ventilation with positive end-expired pressure (PEEP) on ventricular dimensions and to relate changes in shape to changes in stroke volume and left ventricular volumes. Left and right ventricular dimensions were measured using biplane cinefluorography of dogs with radiopaque markers implanted in their hearts, and left ventricular volumes were derived from left ventricular dimensions by assuming that the left ventricle conformed to the shape of a nonprolate ellipsoid. As PEEP increased from 0 to 5, 10, and 15 cmH2O, stroke volume fell 36%, and all three left ventricular end-diastolic dimensions fell, with apex-base falling 5%, anterior-posterior falling 7%, and septal-lateral falling nearly twice as much, 12%. This resulted in a 11.3 cm3 fall in left ventricular end-diastolic volume. The right ventricular end-diastolic dimensions changed in opposite directions with respect to each other as the level and PEEP was raised to 15 cmH2O; one axis fell 3.2 mm, and the midpoint of the right ventricular free wall moved outward by 1.7 mm. Thus the fall in cardiac output (and stroke volume) during PEEP was associated with a fall in left ventricular end-diastolic volume and a change both left and right ventricular configurations. It is not known whether the left ventricular septal-lateral narrowing is the consequence of lateral wall compression by the lungs or encroachment on the left ventricle by the septum.

UR - http://www.scopus.com/inward/record.url?scp=0020117475&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0020117475&partnerID=8YFLogxK

M3 - Article

C2 - 7039366

AN - SCOPUS:0020117475

VL - 242

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 4

ER -