DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination

Chris Allen, Akihiro Kurimasa, Mark A. Brenneman, David J. Chen, Jac A. Nickoloff

Research output: Contribution to journalArticle

142 Scopus citations

Abstract

DNA-dependent protein kinase (DNA-PK), composed of Ku70, Ku80, and the catalytic subunit (DNA-PKcs), is involved in repairing double-strand breaks (DSBs) by nonhomologous end-joining (NHEJ). Certain proteins involved in NHEJ are also involved in DSB repair by homologous recombination (HR). To test the effects of DNA-PKcs on DSB-induced HR, we integrated neo direct repeat HR substrates carrying the I-Scel recognition sequence into DNA-PKcs-defective Chinese hamster ovary (V3) cells. The DNA-PKcs defect was complemented with a human DNA-PKcs cDNA. DSB-induced HR frequencies were 1.5- to 3-fold lower with DNA-PKcs complementation. In complemented and uncomplemented strains, all products arose by gene conversion without associated crossover, and average conversion tract lengths were similar. Suppression of DSB-induced HR in complemented cells probably reflects restoration of NHEJ, consistent with competition between HR and NHEJ during DSB repair. Interestingly, spontaneous HR rates were 1.6- to >3.5-fold lower with DNA-PKcs complementation. DNA-PKcs may suppress spontaneous HR through NHEJ of spontaneous DSBs, perhaps at stalled or blocked replication forks. Because replication protein A (RPA) is involved in both replication and HR, and is phosphorylated by DNA-PKcs, it is possible that the suppression of spontaneous HR by DNA-PKcs reflects regulation of replication-dependent HR by DNA-PKcs, perhaps by means of phosphorylation of RPA.

Original languageEnglish (US)
Pages (from-to)3758-3763
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume99
Issue number6
DOIs
StatePublished - Mar 19 2002

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination'. Together they form a unique fingerprint.

  • Cite this