Dosimetric and deformation effects of image-guided interventions during stereotactic body radiation therapy of the prostate using an endorectal balloon

Bernard L. Jones, Gregory Gan, Quentin Diot, Brian Kavanagh, Robert D. Timmerman, Moyed Miften

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Purpose: During stereotactic body radiation therapy (SBRT) for the treatment of prostate cancer, an inflatable endorectal balloon (ERB) may be used to reduce motion of the target and reduce the dose to the posterior rectal wall. This work assessed the dosimetric impact of manual interventions on ERB position in patients receiving prostate SBRT and investigated the impact of ERB interventions on prostate shape. Methods: The data of seven consecutive patients receiving SBRT for the treatment of clinical stage T1cN0M0 prostate cancer enrolled in a multi-institutional, IRB-approved trial were analyzed. The SBRT dose was 50 Gy in five fractions to a planning target volume (PTV) that included the prostate (implanted with three fiducial markers) with a 3-5 mm margin. All plans were based on simulation images that included an ERB inflated with 60 cm3 of air. Daily kilovoltage cone-beam computed tomography (CBCT) imaging was performed to localize the PTV, and an automated fusion with the planning images yielded displacements required for PTV relocalization. When the ERB volume and/or position were judged to yield inaccurate repositioning, manual adjustment (ERB reinflation and/or repositioning) was performed. Based on all 59 CBCT image sets acquired, a deformable registration algorithm was used to determine the dose received by, displacement of, and deformation of the prostate, bladder (BLA), and anterior rectal wall (ARW). This dose tracking methodology was applied to images taken before and after manual adjustment of the ERB (intervention), and the delivered dose was compared to that which would have been delivered in the absence of intervention. Results: Interventions occurred in 24 out of 35 (69) of the treated fractions. The direct effect of these interventions was an increase in the prostate radiation dose that included 95 of the PTV (D95) from 9.6 ± 1.0 to 10.0 ± 0.2 Gy (p 0.06) and an increase in prostate coverage from 94.0 ± 8.5 to 97.8 ± 1.9 (p 0.03). Additionally, ERB interventions reduced prostate deformation in the anterior-posterior (AP) direction, reduced errors in the sagittal rotation of the prostate, and increased the similarity in shape of the prostate to the radiotherapy plan (increased Dice coefficient from 0.76 ± 0.06 to 0.80 ± 0.04, p 0.01). Postintervention decreases in prostate volume receiving less than the prescribed dose and decreases in the voxel-wise displacement of the prostate, bladder, and anterior rectal wall were observed, which resulted in improved dose-volume histogram (DVH) characteristics. Conclusions: Image-guided interventions in ERB volume and/or position during prostate SBRT were necessary to ensure the delivery of the dose distribution as planned. ERB interventions resulted in reductions in prostate deformations that would have prevented accurate localization of patient anatomy.

Original languageEnglish (US)
Pages (from-to)3080-3088
Number of pages9
JournalMedical Physics
Volume39
Issue number6
DOIs
StatePublished - Jun 2012

Fingerprint

Prostate
Radiotherapy
Cone-Beam Computed Tomography
Prostatic Neoplasms
Urinary Bladder
Fiducial Markers
Research Ethics Committees
Anatomy
Air
Radiation

Keywords

  • deformable registration
  • endorectal balloon
  • intervention
  • prostate SBRT

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Cite this

Dosimetric and deformation effects of image-guided interventions during stereotactic body radiation therapy of the prostate using an endorectal balloon. / Jones, Bernard L.; Gan, Gregory; Diot, Quentin; Kavanagh, Brian; Timmerman, Robert D.; Miften, Moyed.

In: Medical Physics, Vol. 39, No. 6, 06.2012, p. 3080-3088.

Research output: Contribution to journalArticle

Jones, Bernard L. ; Gan, Gregory ; Diot, Quentin ; Kavanagh, Brian ; Timmerman, Robert D. ; Miften, Moyed. / Dosimetric and deformation effects of image-guided interventions during stereotactic body radiation therapy of the prostate using an endorectal balloon. In: Medical Physics. 2012 ; Vol. 39, No. 6. pp. 3080-3088.
@article{fc1c936c64b74f679f15a79b1db520d0,
title = "Dosimetric and deformation effects of image-guided interventions during stereotactic body radiation therapy of the prostate using an endorectal balloon",
abstract = "Purpose: During stereotactic body radiation therapy (SBRT) for the treatment of prostate cancer, an inflatable endorectal balloon (ERB) may be used to reduce motion of the target and reduce the dose to the posterior rectal wall. This work assessed the dosimetric impact of manual interventions on ERB position in patients receiving prostate SBRT and investigated the impact of ERB interventions on prostate shape. Methods: The data of seven consecutive patients receiving SBRT for the treatment of clinical stage T1cN0M0 prostate cancer enrolled in a multi-institutional, IRB-approved trial were analyzed. The SBRT dose was 50 Gy in five fractions to a planning target volume (PTV) that included the prostate (implanted with three fiducial markers) with a 3-5 mm margin. All plans were based on simulation images that included an ERB inflated with 60 cm3 of air. Daily kilovoltage cone-beam computed tomography (CBCT) imaging was performed to localize the PTV, and an automated fusion with the planning images yielded displacements required for PTV relocalization. When the ERB volume and/or position were judged to yield inaccurate repositioning, manual adjustment (ERB reinflation and/or repositioning) was performed. Based on all 59 CBCT image sets acquired, a deformable registration algorithm was used to determine the dose received by, displacement of, and deformation of the prostate, bladder (BLA), and anterior rectal wall (ARW). This dose tracking methodology was applied to images taken before and after manual adjustment of the ERB (intervention), and the delivered dose was compared to that which would have been delivered in the absence of intervention. Results: Interventions occurred in 24 out of 35 (69) of the treated fractions. The direct effect of these interventions was an increase in the prostate radiation dose that included 95 of the PTV (D95) from 9.6 ± 1.0 to 10.0 ± 0.2 Gy (p 0.06) and an increase in prostate coverage from 94.0 ± 8.5 to 97.8 ± 1.9 (p 0.03). Additionally, ERB interventions reduced prostate deformation in the anterior-posterior (AP) direction, reduced errors in the sagittal rotation of the prostate, and increased the similarity in shape of the prostate to the radiotherapy plan (increased Dice coefficient from 0.76 ± 0.06 to 0.80 ± 0.04, p 0.01). Postintervention decreases in prostate volume receiving less than the prescribed dose and decreases in the voxel-wise displacement of the prostate, bladder, and anterior rectal wall were observed, which resulted in improved dose-volume histogram (DVH) characteristics. Conclusions: Image-guided interventions in ERB volume and/or position during prostate SBRT were necessary to ensure the delivery of the dose distribution as planned. ERB interventions resulted in reductions in prostate deformations that would have prevented accurate localization of patient anatomy.",
keywords = "deformable registration, endorectal balloon, intervention, prostate SBRT",
author = "Jones, {Bernard L.} and Gregory Gan and Quentin Diot and Brian Kavanagh and Timmerman, {Robert D.} and Moyed Miften",
year = "2012",
month = "6",
doi = "10.1118/1.4711813",
language = "English (US)",
volume = "39",
pages = "3080--3088",
journal = "Medical Physics",
issn = "0094-2405",
publisher = "AAPM - American Association of Physicists in Medicine",
number = "6",

}

TY - JOUR

T1 - Dosimetric and deformation effects of image-guided interventions during stereotactic body radiation therapy of the prostate using an endorectal balloon

AU - Jones, Bernard L.

AU - Gan, Gregory

AU - Diot, Quentin

AU - Kavanagh, Brian

AU - Timmerman, Robert D.

AU - Miften, Moyed

PY - 2012/6

Y1 - 2012/6

N2 - Purpose: During stereotactic body radiation therapy (SBRT) for the treatment of prostate cancer, an inflatable endorectal balloon (ERB) may be used to reduce motion of the target and reduce the dose to the posterior rectal wall. This work assessed the dosimetric impact of manual interventions on ERB position in patients receiving prostate SBRT and investigated the impact of ERB interventions on prostate shape. Methods: The data of seven consecutive patients receiving SBRT for the treatment of clinical stage T1cN0M0 prostate cancer enrolled in a multi-institutional, IRB-approved trial were analyzed. The SBRT dose was 50 Gy in five fractions to a planning target volume (PTV) that included the prostate (implanted with three fiducial markers) with a 3-5 mm margin. All plans were based on simulation images that included an ERB inflated with 60 cm3 of air. Daily kilovoltage cone-beam computed tomography (CBCT) imaging was performed to localize the PTV, and an automated fusion with the planning images yielded displacements required for PTV relocalization. When the ERB volume and/or position were judged to yield inaccurate repositioning, manual adjustment (ERB reinflation and/or repositioning) was performed. Based on all 59 CBCT image sets acquired, a deformable registration algorithm was used to determine the dose received by, displacement of, and deformation of the prostate, bladder (BLA), and anterior rectal wall (ARW). This dose tracking methodology was applied to images taken before and after manual adjustment of the ERB (intervention), and the delivered dose was compared to that which would have been delivered in the absence of intervention. Results: Interventions occurred in 24 out of 35 (69) of the treated fractions. The direct effect of these interventions was an increase in the prostate radiation dose that included 95 of the PTV (D95) from 9.6 ± 1.0 to 10.0 ± 0.2 Gy (p 0.06) and an increase in prostate coverage from 94.0 ± 8.5 to 97.8 ± 1.9 (p 0.03). Additionally, ERB interventions reduced prostate deformation in the anterior-posterior (AP) direction, reduced errors in the sagittal rotation of the prostate, and increased the similarity in shape of the prostate to the radiotherapy plan (increased Dice coefficient from 0.76 ± 0.06 to 0.80 ± 0.04, p 0.01). Postintervention decreases in prostate volume receiving less than the prescribed dose and decreases in the voxel-wise displacement of the prostate, bladder, and anterior rectal wall were observed, which resulted in improved dose-volume histogram (DVH) characteristics. Conclusions: Image-guided interventions in ERB volume and/or position during prostate SBRT were necessary to ensure the delivery of the dose distribution as planned. ERB interventions resulted in reductions in prostate deformations that would have prevented accurate localization of patient anatomy.

AB - Purpose: During stereotactic body radiation therapy (SBRT) for the treatment of prostate cancer, an inflatable endorectal balloon (ERB) may be used to reduce motion of the target and reduce the dose to the posterior rectal wall. This work assessed the dosimetric impact of manual interventions on ERB position in patients receiving prostate SBRT and investigated the impact of ERB interventions on prostate shape. Methods: The data of seven consecutive patients receiving SBRT for the treatment of clinical stage T1cN0M0 prostate cancer enrolled in a multi-institutional, IRB-approved trial were analyzed. The SBRT dose was 50 Gy in five fractions to a planning target volume (PTV) that included the prostate (implanted with three fiducial markers) with a 3-5 mm margin. All plans were based on simulation images that included an ERB inflated with 60 cm3 of air. Daily kilovoltage cone-beam computed tomography (CBCT) imaging was performed to localize the PTV, and an automated fusion with the planning images yielded displacements required for PTV relocalization. When the ERB volume and/or position were judged to yield inaccurate repositioning, manual adjustment (ERB reinflation and/or repositioning) was performed. Based on all 59 CBCT image sets acquired, a deformable registration algorithm was used to determine the dose received by, displacement of, and deformation of the prostate, bladder (BLA), and anterior rectal wall (ARW). This dose tracking methodology was applied to images taken before and after manual adjustment of the ERB (intervention), and the delivered dose was compared to that which would have been delivered in the absence of intervention. Results: Interventions occurred in 24 out of 35 (69) of the treated fractions. The direct effect of these interventions was an increase in the prostate radiation dose that included 95 of the PTV (D95) from 9.6 ± 1.0 to 10.0 ± 0.2 Gy (p 0.06) and an increase in prostate coverage from 94.0 ± 8.5 to 97.8 ± 1.9 (p 0.03). Additionally, ERB interventions reduced prostate deformation in the anterior-posterior (AP) direction, reduced errors in the sagittal rotation of the prostate, and increased the similarity in shape of the prostate to the radiotherapy plan (increased Dice coefficient from 0.76 ± 0.06 to 0.80 ± 0.04, p 0.01). Postintervention decreases in prostate volume receiving less than the prescribed dose and decreases in the voxel-wise displacement of the prostate, bladder, and anterior rectal wall were observed, which resulted in improved dose-volume histogram (DVH) characteristics. Conclusions: Image-guided interventions in ERB volume and/or position during prostate SBRT were necessary to ensure the delivery of the dose distribution as planned. ERB interventions resulted in reductions in prostate deformations that would have prevented accurate localization of patient anatomy.

KW - deformable registration

KW - endorectal balloon

KW - intervention

KW - prostate SBRT

UR - http://www.scopus.com/inward/record.url?scp=84863522512&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84863522512&partnerID=8YFLogxK

U2 - 10.1118/1.4711813

DO - 10.1118/1.4711813

M3 - Article

C2 - 22755693

AN - SCOPUS:84863522512

VL - 39

SP - 3080

EP - 3088

JO - Medical Physics

JF - Medical Physics

SN - 0094-2405

IS - 6

ER -