Dynamic modeling of apnea induced concurrent variations in arterial blood pressure and cerebral blood flow velocity

Raichel Alex, Rong Zhang, Donald E. Watenpaugh, Khosrow Behbehani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Obstructive Sleep Apnea (OSA) is characterized by partial (hypopnea) or complete cessation (apnea) of airflow to the lungs during sleep. It has been previously reported that apnea episodes lead to significant rise in instantaneous blood pressure concomitant with a rise in cerebral blood flow velocity, indicating loss of cerebral autoregulation during the episodes. In this study, we have used Auto Regressive Moving Average model (ARMA (na, nb, nk)) to quantify OSA induced dynamic changes in cerebral blood flow velocity (CBFV) with beat to beat blood pressure (BP) as an input. BP and CBFV were recorded from 11 positively diagnosed sleep apnea subjects (6 Males, 5 Females; Age: 54.27±6.23 years, BMI:34.95±7.06kg/m2, AHI: 57.39±28.43). The results suggest that two separate models, ARMA (5, 9, 1) and ARMA (5, 10, 0) can be used to quantify dynamic CBFV variations during apneas with a duration of less than and greater than 30s respectively with reasonable accuracy (<6% error).

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4292-4295
Number of pages4
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2016-October
ISSN (Print)1557-170X

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
Country/TerritoryUnited States
CityOrlando
Period8/16/168/20/16

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Dynamic modeling of apnea induced concurrent variations in arterial blood pressure and cerebral blood flow velocity'. Together they form a unique fingerprint.

Cite this