Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis

Vincent S. Tagliabracci, James L. Engel, Sandra E. Wiley, Junyu Xiao, David J. Gonzalez, Hitesh Nidumanda Appaiah, Antonius Koller, Victor Nizet, Kenneth E. White, Jack E. Dixon

Research output: Contribution to journalArticlepeer-review

207 Scopus citations


The family with sequence similarity 20, member C (Fam20C) has recently been identified as the Golgi casein kinase. Fam20C phosphorylates secreted proteins on Ser-x-Glu/pSer motifs and loss-of-function mutations in the kinase cause Raine syndrome, an often-fatal osteosclerotic bone dysplasia. Fam20C is potentially an upstream regulator of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23), because humans with FAM20C mutations and Fam20C KO mice develop hypophosphatemia due to an increase in full-length, biologically active FGF23. However, the mechanism by which Fam20C regulates FGF23 is unknown. Here we show that Fam20C directly phosphorylates FGF23 on Ser180, within the FGF23 R176XXR179/S180AE subtilisin-like proprotein convertase motif. This phosphorylation event inhibits O-glycosylation of FGF23 by polypeptide N-Acetylgalactosaminyltransferase 3 (GalNAc-T3), and promotes FGF23 cleavage and inactivation by the subtilisin-like proprotein convertase furin. Collectively, our results provide a molecular mechanism by which FGF23 is dynamically regulated by phosphorylation, glycosylation, and proteolysis. Furthermore, our findings suggest that cross-talk between phosphorylation and O-glycosylation of proteins in the secretory pathway may be an important mechanism by which secreted proteins are regulated.

Original languageEnglish (US)
Pages (from-to)5520-5525
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number15
StatePublished - Apr 15 2014


  • Chronic Kidney Disease
  • Fam20
  • Familial Tumoral Calcinosis
  • Phosphate Homeostasis
  • Rickets

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis'. Together they form a unique fingerprint.

Cite this