DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans

Yuichi Nishi, Rueyling Lin

Research output: Contribution to journalArticle

60 Citations (Scopus)

Abstract

Oocyte maturation and fertilization initiates a dynamic and tightly regulated process in which a non-dividing oocyte is transformed into a rapidly dividing embryo. We have shown previously that two C. elegans CCCH zinc finger proteins, OMA-1 and OMA-2, have an essential and redundant function in oocyte maturation. Both OMA-1 and OMA-2 are expressed only in oocytes and 1-cell embryos, and need to be degraded rapidly after the first mitotic division for embryogenesis to proceed normally. We report here a distinct redundant function for OMA-1 and OMA-2 in the 1-cell embryo. Depletion of both oma-1 and oma-2 in embryos leads to embryonic lethality. We also show that OMA-1 protein is directly phosphorylated at T239 by the DYRK kinase MBK-2, and that phosphorylation at T239 is required both for OMA-1 function in the 1-cell embryo and its degradation after the first mitosis. OMA-1 phosphorylated at T239 is only detected within a short developmental window of 1-cell embryos, beginning soon after the proposed activation of MBK-2. Phosphorylation at T239 facilitates subsequent phosphorylation of OMA-1 by another kinase, GSK-3, at T339 in vitro. Phosphorylation at both T239 and T339 are essential for correctly-timed OMA-1 degradation in vivo. We propose that a series of precisely-timed phosphorylation events regulates both the activity and the timing of degradation for OMA proteins, thereby allowing restricted and distinct functions of OMA-1 and OMA-2 in the maturing oocyte and 1-cell embryo, ensuring a normal oocyte-to-embryo transition in C. elegans.

Original languageEnglish (US)
Pages (from-to)139-149
Number of pages11
JournalDevelopmental Biology
Volume288
Issue number1
DOIs
StatePublished - Dec 1 2005

Fingerprint

Glycogen Synthase Kinase 3
Oocytes
Embryonic Structures
Phosphorylation
Phosphotransferases
Zinc Fingers
Mitosis
Fertilization
Proteolysis
Embryonic Development
Proteins

Keywords

  • C. elegans
  • DYRK
  • Embryos
  • GSK-3
  • OMA-1
  • Phosphorylation
  • Protein degradation

ASJC Scopus subject areas

  • Developmental Biology

Cite this

@article{2d05d14ef0b84000aa309919ad98c8c3,
title = "DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans",
abstract = "Oocyte maturation and fertilization initiates a dynamic and tightly regulated process in which a non-dividing oocyte is transformed into a rapidly dividing embryo. We have shown previously that two C. elegans CCCH zinc finger proteins, OMA-1 and OMA-2, have an essential and redundant function in oocyte maturation. Both OMA-1 and OMA-2 are expressed only in oocytes and 1-cell embryos, and need to be degraded rapidly after the first mitotic division for embryogenesis to proceed normally. We report here a distinct redundant function for OMA-1 and OMA-2 in the 1-cell embryo. Depletion of both oma-1 and oma-2 in embryos leads to embryonic lethality. We also show that OMA-1 protein is directly phosphorylated at T239 by the DYRK kinase MBK-2, and that phosphorylation at T239 is required both for OMA-1 function in the 1-cell embryo and its degradation after the first mitosis. OMA-1 phosphorylated at T239 is only detected within a short developmental window of 1-cell embryos, beginning soon after the proposed activation of MBK-2. Phosphorylation at T239 facilitates subsequent phosphorylation of OMA-1 by another kinase, GSK-3, at T339 in vitro. Phosphorylation at both T239 and T339 are essential for correctly-timed OMA-1 degradation in vivo. We propose that a series of precisely-timed phosphorylation events regulates both the activity and the timing of degradation for OMA proteins, thereby allowing restricted and distinct functions of OMA-1 and OMA-2 in the maturing oocyte and 1-cell embryo, ensuring a normal oocyte-to-embryo transition in C. elegans.",
keywords = "C. elegans, DYRK, Embryos, GSK-3, OMA-1, Phosphorylation, Protein degradation",
author = "Yuichi Nishi and Rueyling Lin",
year = "2005",
month = "12",
day = "1",
doi = "10.1016/j.ydbio.2005.09.053",
language = "English (US)",
volume = "288",
pages = "139--149",
journal = "Developmental Biology",
issn = "0012-1606",
publisher = "Academic Press Inc.",
number = "1",

}

TY - JOUR

T1 - DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans

AU - Nishi, Yuichi

AU - Lin, Rueyling

PY - 2005/12/1

Y1 - 2005/12/1

N2 - Oocyte maturation and fertilization initiates a dynamic and tightly regulated process in which a non-dividing oocyte is transformed into a rapidly dividing embryo. We have shown previously that two C. elegans CCCH zinc finger proteins, OMA-1 and OMA-2, have an essential and redundant function in oocyte maturation. Both OMA-1 and OMA-2 are expressed only in oocytes and 1-cell embryos, and need to be degraded rapidly after the first mitotic division for embryogenesis to proceed normally. We report here a distinct redundant function for OMA-1 and OMA-2 in the 1-cell embryo. Depletion of both oma-1 and oma-2 in embryos leads to embryonic lethality. We also show that OMA-1 protein is directly phosphorylated at T239 by the DYRK kinase MBK-2, and that phosphorylation at T239 is required both for OMA-1 function in the 1-cell embryo and its degradation after the first mitosis. OMA-1 phosphorylated at T239 is only detected within a short developmental window of 1-cell embryos, beginning soon after the proposed activation of MBK-2. Phosphorylation at T239 facilitates subsequent phosphorylation of OMA-1 by another kinase, GSK-3, at T339 in vitro. Phosphorylation at both T239 and T339 are essential for correctly-timed OMA-1 degradation in vivo. We propose that a series of precisely-timed phosphorylation events regulates both the activity and the timing of degradation for OMA proteins, thereby allowing restricted and distinct functions of OMA-1 and OMA-2 in the maturing oocyte and 1-cell embryo, ensuring a normal oocyte-to-embryo transition in C. elegans.

AB - Oocyte maturation and fertilization initiates a dynamic and tightly regulated process in which a non-dividing oocyte is transformed into a rapidly dividing embryo. We have shown previously that two C. elegans CCCH zinc finger proteins, OMA-1 and OMA-2, have an essential and redundant function in oocyte maturation. Both OMA-1 and OMA-2 are expressed only in oocytes and 1-cell embryos, and need to be degraded rapidly after the first mitotic division for embryogenesis to proceed normally. We report here a distinct redundant function for OMA-1 and OMA-2 in the 1-cell embryo. Depletion of both oma-1 and oma-2 in embryos leads to embryonic lethality. We also show that OMA-1 protein is directly phosphorylated at T239 by the DYRK kinase MBK-2, and that phosphorylation at T239 is required both for OMA-1 function in the 1-cell embryo and its degradation after the first mitosis. OMA-1 phosphorylated at T239 is only detected within a short developmental window of 1-cell embryos, beginning soon after the proposed activation of MBK-2. Phosphorylation at T239 facilitates subsequent phosphorylation of OMA-1 by another kinase, GSK-3, at T339 in vitro. Phosphorylation at both T239 and T339 are essential for correctly-timed OMA-1 degradation in vivo. We propose that a series of precisely-timed phosphorylation events regulates both the activity and the timing of degradation for OMA proteins, thereby allowing restricted and distinct functions of OMA-1 and OMA-2 in the maturing oocyte and 1-cell embryo, ensuring a normal oocyte-to-embryo transition in C. elegans.

KW - C. elegans

KW - DYRK

KW - Embryos

KW - GSK-3

KW - OMA-1

KW - Phosphorylation

KW - Protein degradation

UR - http://www.scopus.com/inward/record.url?scp=28244500574&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=28244500574&partnerID=8YFLogxK

U2 - 10.1016/j.ydbio.2005.09.053

DO - 10.1016/j.ydbio.2005.09.053

M3 - Article

VL - 288

SP - 139

EP - 149

JO - Developmental Biology

JF - Developmental Biology

SN - 0012-1606

IS - 1

ER -