EB1 binding provides a diffusion trap mechanism regulating STIM1 localization and Ca2+ signaling

Chi Lun Chang, Yu Ju Chen, Jen Liou

Research output: Contribution to journalArticlepeer-review


The endoplasmic reticulum (ER) Ca2+ sensor STIM1 forms oligomers and translocates to ER-plasma membrane (PM) junctions to activate store-operated Ca2+ entry (SOCE) following ER Ca2+ depletion. STIM1 also directly interacts with end binding protein 1 (EB1) at microtubule (MT) plus-ends and resembles comet-like structures during time-lapse imaging. Nevertheless, the role of STIM1-EB1 interaction in regulating SOCE remains unresolved. Using live-cell imaging combined with pharmacological perturbation and a reconstitution approach, we revealed that EB1 binding constitutes a diffusion trap mechanism restricting STIM1 targeting to ER-PM junctions. We further showed that STIM1 oligomers retain EB1 binding ability in ER Ca2+-depleted cells. EB1 binding delayed the translocation of STIM1 oligomers to ER-PM junctions and recaptured STIM1 to prevent excess SOCE and ER Ca2+ overload. Thus, the counterbalance of EB1 binding and PM targeting of STIM1 shapes the kinetics and amplitude of local SOCE in regions with growing MTs, and contributes to precise spatiotemporal regulation of Ca2+ signaling crucial for cellular functions and homeostasis.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Nov 22 2017

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'EB1 binding provides a diffusion trap mechanism regulating STIM1 localization and Ca<sup>2+</sup> signaling'. Together they form a unique fingerprint.

Cite this