Effect of immunization with the mannose-induced Acanthamoeba protein and Acanthamoeba plasminogen activator in mitigating Acanthamoeba keratitis

Hassan Alizadeh, Sudha Neelam, Jerry Y. Niederkorn

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

PURPOSE. The mannose-induced cytopathic protein (MIP-133) and Acanthamoeba plasminogen activator (aPA) play key roles in the pathogenesis of Acanthamoeba keratitis by inducing a cytopathic effect on the corneal epithelial and stromal cells and by production of proteolytic enzymes that facilitate the invasion of trophozoites through the basement membrane. The goal of the present study was to gain insight into the pathogenicity of Acanthamoeba infection as well as to determine whether oral immunization with aPA and MIP-133 produce an additive protection against Acanthamoeba keratitis. METHODS. MIP-133 and aPA were isolated by chromatography. The purity of the concentrated MIP-133 and aPA was confirmed by SDS-PAGE and fibrinolytic activity, respectively. aPA activity of Acanthamoeba cultures was quantitated by radial diffusion in fibrin-agarose gel. The capacity of aPA and MIP-133 to induce cytolysis of corneal epithelial cells was tested in vitro. Chinese hamsters were orally immunized with four weekly doses of aPA or MIP-133 conjugated with cholera toxin. The animals were immunized before infection to determine the prophylactic effect of oral immunization. The therapeutic effect of oral immunization with aPA and MIP-133 was determined after corneal infection had been established. The animals were then infected via Acanthamoeba castellanii-laden contact lenses. RESULTS. aPA was characterized in pathogenic and nonpathogenic strains of Acanthamoeba spp. Oral immunization with MIP-133 before and after infection with Acanthamoeba significantly reduced the severity of corneal infection which includes infiltration and ulceration (P < 0.05) and shortened the duration of the disease. Immunization with aPA alone did not significantly affect the course of disease (P > 0.05). CONCLUSIONS. These data suggest that once trophozoites invade the cornea, MIP-133 production is necessary to initiate corneal disease and plays an important role in the subsequent steps of the pathogenic cascade of Acanthamoeba keratitis.

Original languageEnglish (US)
Pages (from-to)5597-5604
Number of pages8
JournalInvestigative Ophthalmology and Visual Science
Volume48
Issue number12
DOIs
StatePublished - Dec 2007

Fingerprint

Acanthamoeba Keratitis
Acanthamoeba
Plasminogen Activators
Mannose
Immunization
Proteins
Infection
Trophozoites
Epithelial Cells
Acanthamoeba castellanii
Corneal Diseases
Cholera Toxin
Contact Lenses
Therapeutic Uses
Stromal Cells
Cricetulus
Fibrin
Basement Membrane
Sepharose
Cornea

ASJC Scopus subject areas

  • Ophthalmology

Cite this

@article{c9bee7e785964ca8832c65bfacf47386,
title = "Effect of immunization with the mannose-induced Acanthamoeba protein and Acanthamoeba plasminogen activator in mitigating Acanthamoeba keratitis",
abstract = "PURPOSE. The mannose-induced cytopathic protein (MIP-133) and Acanthamoeba plasminogen activator (aPA) play key roles in the pathogenesis of Acanthamoeba keratitis by inducing a cytopathic effect on the corneal epithelial and stromal cells and by production of proteolytic enzymes that facilitate the invasion of trophozoites through the basement membrane. The goal of the present study was to gain insight into the pathogenicity of Acanthamoeba infection as well as to determine whether oral immunization with aPA and MIP-133 produce an additive protection against Acanthamoeba keratitis. METHODS. MIP-133 and aPA were isolated by chromatography. The purity of the concentrated MIP-133 and aPA was confirmed by SDS-PAGE and fibrinolytic activity, respectively. aPA activity of Acanthamoeba cultures was quantitated by radial diffusion in fibrin-agarose gel. The capacity of aPA and MIP-133 to induce cytolysis of corneal epithelial cells was tested in vitro. Chinese hamsters were orally immunized with four weekly doses of aPA or MIP-133 conjugated with cholera toxin. The animals were immunized before infection to determine the prophylactic effect of oral immunization. The therapeutic effect of oral immunization with aPA and MIP-133 was determined after corneal infection had been established. The animals were then infected via Acanthamoeba castellanii-laden contact lenses. RESULTS. aPA was characterized in pathogenic and nonpathogenic strains of Acanthamoeba spp. Oral immunization with MIP-133 before and after infection with Acanthamoeba significantly reduced the severity of corneal infection which includes infiltration and ulceration (P < 0.05) and shortened the duration of the disease. Immunization with aPA alone did not significantly affect the course of disease (P > 0.05). CONCLUSIONS. These data suggest that once trophozoites invade the cornea, MIP-133 production is necessary to initiate corneal disease and plays an important role in the subsequent steps of the pathogenic cascade of Acanthamoeba keratitis.",
author = "Hassan Alizadeh and Sudha Neelam and Niederkorn, {Jerry Y.}",
year = "2007",
month = "12",
doi = "10.1167/iovs.07-0407",
language = "English (US)",
volume = "48",
pages = "5597--5604",
journal = "Investigative Ophthalmology and Visual Science",
issn = "0146-0404",
publisher = "Association for Research in Vision and Ophthalmology Inc.",
number = "12",

}

TY - JOUR

T1 - Effect of immunization with the mannose-induced Acanthamoeba protein and Acanthamoeba plasminogen activator in mitigating Acanthamoeba keratitis

AU - Alizadeh, Hassan

AU - Neelam, Sudha

AU - Niederkorn, Jerry Y.

PY - 2007/12

Y1 - 2007/12

N2 - PURPOSE. The mannose-induced cytopathic protein (MIP-133) and Acanthamoeba plasminogen activator (aPA) play key roles in the pathogenesis of Acanthamoeba keratitis by inducing a cytopathic effect on the corneal epithelial and stromal cells and by production of proteolytic enzymes that facilitate the invasion of trophozoites through the basement membrane. The goal of the present study was to gain insight into the pathogenicity of Acanthamoeba infection as well as to determine whether oral immunization with aPA and MIP-133 produce an additive protection against Acanthamoeba keratitis. METHODS. MIP-133 and aPA were isolated by chromatography. The purity of the concentrated MIP-133 and aPA was confirmed by SDS-PAGE and fibrinolytic activity, respectively. aPA activity of Acanthamoeba cultures was quantitated by radial diffusion in fibrin-agarose gel. The capacity of aPA and MIP-133 to induce cytolysis of corneal epithelial cells was tested in vitro. Chinese hamsters were orally immunized with four weekly doses of aPA or MIP-133 conjugated with cholera toxin. The animals were immunized before infection to determine the prophylactic effect of oral immunization. The therapeutic effect of oral immunization with aPA and MIP-133 was determined after corneal infection had been established. The animals were then infected via Acanthamoeba castellanii-laden contact lenses. RESULTS. aPA was characterized in pathogenic and nonpathogenic strains of Acanthamoeba spp. Oral immunization with MIP-133 before and after infection with Acanthamoeba significantly reduced the severity of corneal infection which includes infiltration and ulceration (P < 0.05) and shortened the duration of the disease. Immunization with aPA alone did not significantly affect the course of disease (P > 0.05). CONCLUSIONS. These data suggest that once trophozoites invade the cornea, MIP-133 production is necessary to initiate corneal disease and plays an important role in the subsequent steps of the pathogenic cascade of Acanthamoeba keratitis.

AB - PURPOSE. The mannose-induced cytopathic protein (MIP-133) and Acanthamoeba plasminogen activator (aPA) play key roles in the pathogenesis of Acanthamoeba keratitis by inducing a cytopathic effect on the corneal epithelial and stromal cells and by production of proteolytic enzymes that facilitate the invasion of trophozoites through the basement membrane. The goal of the present study was to gain insight into the pathogenicity of Acanthamoeba infection as well as to determine whether oral immunization with aPA and MIP-133 produce an additive protection against Acanthamoeba keratitis. METHODS. MIP-133 and aPA were isolated by chromatography. The purity of the concentrated MIP-133 and aPA was confirmed by SDS-PAGE and fibrinolytic activity, respectively. aPA activity of Acanthamoeba cultures was quantitated by radial diffusion in fibrin-agarose gel. The capacity of aPA and MIP-133 to induce cytolysis of corneal epithelial cells was tested in vitro. Chinese hamsters were orally immunized with four weekly doses of aPA or MIP-133 conjugated with cholera toxin. The animals were immunized before infection to determine the prophylactic effect of oral immunization. The therapeutic effect of oral immunization with aPA and MIP-133 was determined after corneal infection had been established. The animals were then infected via Acanthamoeba castellanii-laden contact lenses. RESULTS. aPA was characterized in pathogenic and nonpathogenic strains of Acanthamoeba spp. Oral immunization with MIP-133 before and after infection with Acanthamoeba significantly reduced the severity of corneal infection which includes infiltration and ulceration (P < 0.05) and shortened the duration of the disease. Immunization with aPA alone did not significantly affect the course of disease (P > 0.05). CONCLUSIONS. These data suggest that once trophozoites invade the cornea, MIP-133 production is necessary to initiate corneal disease and plays an important role in the subsequent steps of the pathogenic cascade of Acanthamoeba keratitis.

UR - http://www.scopus.com/inward/record.url?scp=38549116638&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=38549116638&partnerID=8YFLogxK

U2 - 10.1167/iovs.07-0407

DO - 10.1167/iovs.07-0407

M3 - Article

C2 - 18055809

AN - SCOPUS:38549116638

VL - 48

SP - 5597

EP - 5604

JO - Investigative Ophthalmology and Visual Science

JF - Investigative Ophthalmology and Visual Science

SN - 0146-0404

IS - 12

ER -