Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure

R. Matthew Brothers, Rong Zhang, Jonathan E. Wingo, Kimberly A. Hubing, Craig G. Crandall

Research output: Contribution to journalArticle

23 Citations (Scopus)

Abstract

Impaired cerebral autoregulation during marked reductions in arterial blood pressure may contribute to heat stress-induced orthostatic intolerance. This study tested the hypothesis that passive heat stress attenuates dynamic cerebral autoregulation during pronounced swings in arterial blood pressure. Mean arterial blood pressure (MAP) and middle cerebral artery blood velocity were continuously recorded for ∼6 min during normothermia and heat stress (core body temperature = 36.9 ± 0.1°C and 38.0 ± 0.1°C, respectively, P < 0.001) in nine healthy individuals. Swings in MAP were induced by 70-mmHg oscillatory lower body negative pressure (OLBNP) during normothermia and at a sufficient lower body negative pressure to cause similar swings in MAP during heat stress. OLBNP was applied at a very low frequency (∼0.03 Hz, i.e., 15 s on-15 s off) and a low frequency (∼0.1 Hz, i.e., 5 s on-5 s off). For each thermal condition, transfer gain, phase, and coherence function were calculated at both frequencies of OLBNP. During very low-frequency OLBNP, transfer function gain was reduced by heat stress (0.55 ± 0.20 and 0.31 ± 0.07 cm·s-1·mmHg-1 during normothermia and heat stress, respectively, P = 0.02), which is reflective of improved cerebrovascular autoregulation. During low-frequency OLBNP, transfer function gain was similar between thermal conditions (1.19 ± 0.53 and 1.01 ± 0.20 cm·s-1·mmHg-1 during normothermia and heat stress, respectively, P = 0.32). Estimates of phase and coherence were similar between thermal conditions at both frequencies of OLBNP. Contrary to our hypothesis, dynamic cerebral autoregulation during large swings in arterial blood pressure during very low-frequency (i.e., 0.03 Hz) OLBNP is improved during heat stress, but it is unchanged during low-frequency (i.e., 0.1 Hz) OLBNP.

Original languageEnglish (US)
Pages (from-to)1722-1729
Number of pages8
JournalJournal of Applied Physiology
Volume107
Issue number6
DOIs
StatePublished - Dec 2009

Fingerprint

Lower Body Negative Pressure
Arterial Pressure
Homeostasis
Hot Temperature
Orthostatic Intolerance
Middle Cerebral Artery
Body Temperature

Keywords

  • Brain blood flow
  • Hyperthermia
  • Orthostasis
  • Transfer function

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this

Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure. / Brothers, R. Matthew; Zhang, Rong; Wingo, Jonathan E.; Hubing, Kimberly A.; Crandall, Craig G.

In: Journal of Applied Physiology, Vol. 107, No. 6, 12.2009, p. 1722-1729.

Research output: Contribution to journalArticle

@article{d4be22c8fa1247da8d5a485bf5d07462,
title = "Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure",
abstract = "Impaired cerebral autoregulation during marked reductions in arterial blood pressure may contribute to heat stress-induced orthostatic intolerance. This study tested the hypothesis that passive heat stress attenuates dynamic cerebral autoregulation during pronounced swings in arterial blood pressure. Mean arterial blood pressure (MAP) and middle cerebral artery blood velocity were continuously recorded for ∼6 min during normothermia and heat stress (core body temperature = 36.9 ± 0.1°C and 38.0 ± 0.1°C, respectively, P < 0.001) in nine healthy individuals. Swings in MAP were induced by 70-mmHg oscillatory lower body negative pressure (OLBNP) during normothermia and at a sufficient lower body negative pressure to cause similar swings in MAP during heat stress. OLBNP was applied at a very low frequency (∼0.03 Hz, i.e., 15 s on-15 s off) and a low frequency (∼0.1 Hz, i.e., 5 s on-5 s off). For each thermal condition, transfer gain, phase, and coherence function were calculated at both frequencies of OLBNP. During very low-frequency OLBNP, transfer function gain was reduced by heat stress (0.55 ± 0.20 and 0.31 ± 0.07 cm·s-1·mmHg-1 during normothermia and heat stress, respectively, P = 0.02), which is reflective of improved cerebrovascular autoregulation. During low-frequency OLBNP, transfer function gain was similar between thermal conditions (1.19 ± 0.53 and 1.01 ± 0.20 cm·s-1·mmHg-1 during normothermia and heat stress, respectively, P = 0.32). Estimates of phase and coherence were similar between thermal conditions at both frequencies of OLBNP. Contrary to our hypothesis, dynamic cerebral autoregulation during large swings in arterial blood pressure during very low-frequency (i.e., 0.03 Hz) OLBNP is improved during heat stress, but it is unchanged during low-frequency (i.e., 0.1 Hz) OLBNP.",
keywords = "Brain blood flow, Hyperthermia, Orthostasis, Transfer function",
author = "Brothers, {R. Matthew} and Rong Zhang and Wingo, {Jonathan E.} and Hubing, {Kimberly A.} and Crandall, {Craig G.}",
year = "2009",
month = "12",
doi = "10.1152/japplphysiol.00475.2009",
language = "English (US)",
volume = "107",
pages = "1722--1729",
journal = "Journal of Applied Physiology",
issn = "0161-7567",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure

AU - Brothers, R. Matthew

AU - Zhang, Rong

AU - Wingo, Jonathan E.

AU - Hubing, Kimberly A.

AU - Crandall, Craig G.

PY - 2009/12

Y1 - 2009/12

N2 - Impaired cerebral autoregulation during marked reductions in arterial blood pressure may contribute to heat stress-induced orthostatic intolerance. This study tested the hypothesis that passive heat stress attenuates dynamic cerebral autoregulation during pronounced swings in arterial blood pressure. Mean arterial blood pressure (MAP) and middle cerebral artery blood velocity were continuously recorded for ∼6 min during normothermia and heat stress (core body temperature = 36.9 ± 0.1°C and 38.0 ± 0.1°C, respectively, P < 0.001) in nine healthy individuals. Swings in MAP were induced by 70-mmHg oscillatory lower body negative pressure (OLBNP) during normothermia and at a sufficient lower body negative pressure to cause similar swings in MAP during heat stress. OLBNP was applied at a very low frequency (∼0.03 Hz, i.e., 15 s on-15 s off) and a low frequency (∼0.1 Hz, i.e., 5 s on-5 s off). For each thermal condition, transfer gain, phase, and coherence function were calculated at both frequencies of OLBNP. During very low-frequency OLBNP, transfer function gain was reduced by heat stress (0.55 ± 0.20 and 0.31 ± 0.07 cm·s-1·mmHg-1 during normothermia and heat stress, respectively, P = 0.02), which is reflective of improved cerebrovascular autoregulation. During low-frequency OLBNP, transfer function gain was similar between thermal conditions (1.19 ± 0.53 and 1.01 ± 0.20 cm·s-1·mmHg-1 during normothermia and heat stress, respectively, P = 0.32). Estimates of phase and coherence were similar between thermal conditions at both frequencies of OLBNP. Contrary to our hypothesis, dynamic cerebral autoregulation during large swings in arterial blood pressure during very low-frequency (i.e., 0.03 Hz) OLBNP is improved during heat stress, but it is unchanged during low-frequency (i.e., 0.1 Hz) OLBNP.

AB - Impaired cerebral autoregulation during marked reductions in arterial blood pressure may contribute to heat stress-induced orthostatic intolerance. This study tested the hypothesis that passive heat stress attenuates dynamic cerebral autoregulation during pronounced swings in arterial blood pressure. Mean arterial blood pressure (MAP) and middle cerebral artery blood velocity were continuously recorded for ∼6 min during normothermia and heat stress (core body temperature = 36.9 ± 0.1°C and 38.0 ± 0.1°C, respectively, P < 0.001) in nine healthy individuals. Swings in MAP were induced by 70-mmHg oscillatory lower body negative pressure (OLBNP) during normothermia and at a sufficient lower body negative pressure to cause similar swings in MAP during heat stress. OLBNP was applied at a very low frequency (∼0.03 Hz, i.e., 15 s on-15 s off) and a low frequency (∼0.1 Hz, i.e., 5 s on-5 s off). For each thermal condition, transfer gain, phase, and coherence function were calculated at both frequencies of OLBNP. During very low-frequency OLBNP, transfer function gain was reduced by heat stress (0.55 ± 0.20 and 0.31 ± 0.07 cm·s-1·mmHg-1 during normothermia and heat stress, respectively, P = 0.02), which is reflective of improved cerebrovascular autoregulation. During low-frequency OLBNP, transfer function gain was similar between thermal conditions (1.19 ± 0.53 and 1.01 ± 0.20 cm·s-1·mmHg-1 during normothermia and heat stress, respectively, P = 0.32). Estimates of phase and coherence were similar between thermal conditions at both frequencies of OLBNP. Contrary to our hypothesis, dynamic cerebral autoregulation during large swings in arterial blood pressure during very low-frequency (i.e., 0.03 Hz) OLBNP is improved during heat stress, but it is unchanged during low-frequency (i.e., 0.1 Hz) OLBNP.

KW - Brain blood flow

KW - Hyperthermia

KW - Orthostasis

KW - Transfer function

UR - http://www.scopus.com/inward/record.url?scp=73449139114&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=73449139114&partnerID=8YFLogxK

U2 - 10.1152/japplphysiol.00475.2009

DO - 10.1152/japplphysiol.00475.2009

M3 - Article

VL - 107

SP - 1722

EP - 1729

JO - Journal of Applied Physiology

JF - Journal of Applied Physiology

SN - 0161-7567

IS - 6

ER -