Effects of Potassium Magnesium Citrate Supplementation on 24-Hour Ambulatory Blood Pressure and Oxidative Stress Marker in Prehypertensive and Hypertensive Subjects

Wanpen Vongpatanasin, Poghni Peri-Okonny, Alejandro Velasco, Debbie Arbique, Zhongyun Wang, Priya Ravikumar, Beverly Adams-Huet, Orson W. Moe, Charles Y C Pak

Research output: Contribution to journalArticle

7 Scopus citations


Diet rich in fruits, vegetables, and dairy products, known as the Dietary Approaches to Stop Hypertension (DASH) diet, is known to reduce blood pressure (BP) in hypertensive patients. More recently, the DASH diet was shown to reduce oxidative stress in hypertensive and nonhypertensive humans. However, the main nutritional components responsible for these beneficial effects of the DASH diet remain unknown. Because the DASH diet is rich in potassium (K), magnesium (Mg), and alkali, we performed a randomized, double-blinded, placebo-controlled study to compare effects of potassium magnesium citrate (KMgCit), potassium chloride (KCl), and potassium citrate (KCit) to allow dissociation of the three components of K, Mg, and citrate on 24-hour ambulatory BP and urinary 8-isoprostane in hypertensive and prehypertensive subjects, using a randomized crossover design. We found that KCl supplementation for 4 weeks induced a significant reduction in nighttime SBP compared with placebo (116 ± 12 vs 121 ± 15 mm Hg, respectively, p <0.01 vs placebo), whereas KMgCit and KCit had no significant effect in the same subjects (118 ± 11 and 119 ± 13 mm Hg, respectively, p >0.1 vs placebo). In contrast, urinary 8-isoprostane was significantly reduced with KMgCit powder compared with placebo (13.5 ± 5.7 vs 21.1 ± 10.5 ng/mgCr, respectively, p <0.001), whereas KCl and KCit had no effect (21.4 ± 9.1 and 18.3 ± 8.4, respectively, p >0.1 vs placebo). In conclusion, our study demonstrated differential effects of KCl and KMgCit supplementation on BP and the oxidative stress marker in prehypertensive and hypertensive subjects. Clinical significance of the antioxidative effect of KMgCit remains to be determined in future studies.

Original languageEnglish (US)
JournalAmerican Journal of Cardiology
StateAccepted/In press - Mar 3 2016


ASJC Scopus subject areas

  • Cardiology and Cardiovascular Medicine

Cite this