Abstract
Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly-related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. While studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. Here we present direct intracranial recordings from the hippocampal formation of surgical epilepsy patients while they performed a virtual spatial navigation task. Our results suggest that encoding target locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, or movement. These findings provide the first direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homologue of the hippocampal subregion in which most rodent boundary cells are found.
Original language | English (US) |
---|---|
Journal | Unknown Journal |
DOIs | |
State | Published - Nov 12 2017 |
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Agricultural and Biological Sciences(all)
- Immunology and Microbiology(all)
- Neuroscience(all)
- Pharmacology, Toxicology and Pharmaceutics(all)